Меню Рубрики

Глаз как оптическая система с точки зрения физики

2.1.1. Строение глаза

На рисунке 2.1. изображен разрез глазного яблокаи показаны основные детали глаза.


Рис. 2.1. Горизонтальный разрез правого глаза.

Глаз представляет собой шаровидное тело (глазное яблоко), почти полностью покрытое непрозрачной твердой оболочкой (склерой). В передней части глаза оболочка переходит в выпуклую и прозрачную роговицу. Склера и роговица обуславливают форму глаза, защищают его и служат местом крепления глазодвигательных мышц. Диаметр всего глазного яблока около 22-24 мм, масса 7-8 г.

Тонкая сосудистая пластинка (радужная оболочка) является диафрагмой, ограничивающей проходящий пучок лучей. Через отверстие в радужной оболочке (зрачок) свет проникает в глаз. В зависимости от величины падающего светового потока диаметр зрачка может изменяется от 1 до 8 мм.

Помимо сосудов радужная оболочка содержит большое количество пигментных клеток, в зависимости от их содержания и глубины залегания радужная оболочка имеет различный цвет. Когда в радужной оболочке нет никакого цветного вещества, то она кажется красной от крови, заключенной в пронизывающих ее кровеносных сосудах. В этом случае глаза плохо защищены от света и иногда страдают светобоязнью (альбинизмом), но в темноте превосходят по остроте зрения глаза с темной окраской.

Хрусталик представляет собой двояковыпуклую эластичную линзу, которая крепится на мышцах ресничного тела. Ресничное тело обеспечивает изменение формы хрусталика. Хрусталик разделяет внутреннюю поверхность глаза на две камеры: переднюю камеру, заполненную водянистой влагой, и заднюю камеру, заполненную стекловидным телом.

Внутренняя поверхность задней камеры покрыта сетчаткой, представляющей собой светочувствительный слой. Получаемое светочувствительными элементами сетчатки раздражение передается волокнам зрительного нерва и по ним достигает зрительных центров мозга. Между сетчаткой и склерой находится тонкая сосудистая оболочка, состоящая из сети кровеносных сосудов, питающих глаз.

Место входа зрительного нерва представляет собой слепое пятно. Немного выше расположено желтое пятно – участок наиболее ясного видения. Линия, проходящая через центр желтого пятна и центр хрусталика, называется зрительной осью. Она отклонена от оптической оси глаза на угол около 5°.

2.1.2. Упрощенная оптическая схема глаза

Поток излучения, отраженный от наблюдаемого предмета, проходит через оптическую систему глаза и фокусируется на внутренней поверхности глаза – сетчатой оболочке, образуя на ней обратное и уменьшенное изображение (мозг «переворачивает» обратное изображение, и оно воспринимается как прямое). Оптическую систему глаза составляют роговица, водянистая влага, хрусталик и стекловидное тело (рис. 2.2). Особенностью этой системы является то, что последняя среда, проходимая светом непосредственно перед образованием изображения на сетчатке, обладает показателем преломления, отличным от единицы. Вследствие этого фокусные расстояния оптической системы глаза во внешнем пространстве (переднее фокусное расстояние) и внутри глаза (заднее фокусное расстояние) неодинаковы.


Рис. 2.2. Оптическая система глаза.

Преломление света в глазе происходит главным образом на его внешней поверхности – роговой оболочке, или роговице, а также на поверхностях хрусталика. Радужная оболочка определяет диаметр зрачка, величина которого может изменяться непроизвольным мышечным усилием от 1 до 8 мм.

Оптическая система глаза чрезвычайно сложна, поэтому при расчетах хода лучей обычно пользуются упрощенными, эквивалентными истинному глазу «схематическими глазами». В таблице 2.1 приведены данные для аккомодированного и не аккомодированного глаза.

В состоянии покоя В состоянии наибольшей аккомодации
пов-ти радиус
кривизны
осевое
расстояние
показатель
преломления
радиус
кривизны
осевое
расстояние
показатель
преломления
1 7,7 0,5 1,376 7,7 0,5 1,376
2 6,8 3,1 1,336 6,8 2,7 1,336
3 10,0 3,6 1,386 5,33 4,0 1,386
4 -6,0 15 1,336 -5,33 15 1,336
Оптическая сила Оптическая сила

Таблица 2.1. Данные «схематического глаза».

Оптическая сила глаза вычисляется как обратное фокусное расстояние:

, (2.1)

где – заднее фокусное расстояние глаза, выраженное в метрах.

2.1.3. Аккомодация

Аккомодация – это способность глаза приспосабливаться к четкому различению предметов, расположенных на разных расстояниях от глаза.

Аккомодация происходит путем изменения кривизны поверхностей хрусталика при помощи натяжения или расслабления ресничного тела. Когда ресничное тело натянуто, хрусталик растягивается и его радиусы кривизны увеличиваются. При уменьшении натяжения мышцы хрусталик под действием упругих сил увеличивает свою кривизну.

В свободном, ненапряженном состоянии нормального глаза на сетчатке получаются ясные изображения бесконечно удаленных предметов, а при наибольшей аккомодации видны самые близкие предметы.

Положение предмета, при котором создается резкое изображение на сетчатке для ненапряженного глаза, называют дальней точкой глаза.

Положение предмета, при котором создается резкое изображение на сетчатке при наибольшем возможном напряжении глаза, называют ближней точкой глаза.

При аккомодации глаза на бесконечность задний фокус совпадает с сетчаткой. При наибольшем напряжении на сетчатке получается изображение предмета, находящегося на расстоянии около 9 см (рис. 2.4).


а) дальняя точка

б) ближняя точка
Рис. 2.4. Изображение ближней и дальней точки.

Разность обратных величин расстояний между ближней и дальней точкой называют диапазоном аккомодации глаза (измеряется в дптр).

С возрастом способность глаза к аккомодации постепенно уменьшается. Скажем, в возрасте 20 лет для среднего глаза ближняя точка находится на расстоянии около 10 см (диапазон аккомодации 10 дптр), в 50 лет ближняя точка располагается на расстоянии уже около 40 см (диапазон аккомодации 2.5 дптр), а к 60 годам уходит на бесконечность, то есть аккомодация прекращается. Это явление называется возрастной дальнозоркостью или пресбиопией.

Расстояние наилучшего зрения – это расстояние, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета.

В среднем расстояние наилучшего зрения составляет около 25-30 см, хотя для каждого человека оно может быть индивидуальным.

Видеоурок 1: Фотоаппарат — Физика в опытах и экспериментах

Видеоурок 2: Модель оптической системы глаза

Лекция: Фотоаппарат как оптический прибор. Глаз как оптическая система

Вам не показалось, это не урок биологии, но мы действительно принялись за рассмотрение строения и работы глаза. С точки зрения физики, глаз — это совершенный и удивительный оптический прибор.

Строение глаза

Мы не будем сильно углубляться в строение глаза, рассмотрим основные его части.

Итак, представим, что глаз смотрит на некоторого человека. Лучи от него попадают на защитную часть глаза, называемую роговицей.

Роговица — это сферическое прозрачное тело, а, значит, она преломляет лучи, попавшие на нее.

Далее лучи попадают на хрусталик. Он выступает в роли двояковыпуклой линзы. После хрусталика лучи собираются в одну точку. Как известно двояковыпуклая линза — это собирающая линза.

В зависимости от того, на каком расстоянии находится предмет, хрусталик меняет радиусы кривизны, что улучшает фокусировку. Процесс, при котором хрусталик непроизвольно подстраивается к расстоянию предмета, называется аккомодация. Данный процесс происходит, когда мы смотри на приближающийся или отдаляющийся предмет.

Перевернутое и уменьшенное изображение попадает на сетчатку, где нервные окончания сканируют его, переворачивают и отправляют в мозг.

Проблемы со зрением

Как известно, существует две основных проблемы со зрением: дальнозоркость и близорукость. Обе болезни описываются исключительно с точки зрения физики, а объясняются свойствами и толщиной линзы (хрусталика).

Если лучи от предмета соединяются перед сетчаткой, то человек страдает на близорукость.

Исправить данную проблему можно с помощью рассеивающей линзы, то есть именно поэтому больным выписывают очки.

Дальнозоркость — при такой болезни лучи соединяются после сетчатки, то есть фокус находится за пределами глаза.

Для исправления такого зрения используют очки с собирающими линзами.

Кроме природного оптического прибора существуют и искусственные: микроскопы, телескопы, очки, камеры и прочие предметы. Все они имеют аналогичное строение. Для улучшения или увеличения изображения используется система из линз (в микроскопе, телескопе).

Фотоаппарат

Искусственным оптическим прибором можно назвать фотоаппарат. Рассматривать строение современных фотоаппаратов — достаточно сложно. Поэтому в школьном курсе физики рассмотрим самую простую модель, один из первых фотоаппаратов.

Основным оптическим преобразователем, который способен зафиксировать большой объект на пленке, является объектив. Объектив состоит из одной или более линз, которые позволяют фиксировать изображение. Объектив имеет возможность изменять положение линз относительно друг друга, чтобы фокусировать изображение, то есть делать его четким. Все мы знаем, как выглядит сфокусированное изображение — оно четкое, полностью описывает все детали предмета. Если же линзы в объективе не сфокусированы, то изображение получается нечетким и размытым. Аналогичным образом видит человек, обладающим плохим зрением, поскольку изображение не попадает в фокус.

Чтобы получить изображение от отражения света для начала необходимо открыть затвор — только в данном случае пленка будет освещаться в момент фотографирования. Чтобы обеспечить необходимый поток света, его регулируют с помощью диафрагмы.

В результате преломления лучей на линзах объектива, на пленке можно получить перевернутое, действительное и уменьшенное изображение.

На пленке невозможно получить изображение до тех пор, пока её не опустят в проявитель. После этого все места, куда попадал свет, становятся темными, а где света было меньше — светлыми. Такое изображение называется негативом.

После того, как негатив просветили, его опускают в закрепитель. Чтобы получить изображение на бумаге, негатив прикладывают к светочувствительной бумаге.

Глаз как оптическая система с точки зрения физики

  • Вы уже знаете, что большую часть информации об окружающем мире мы получаем благодаря зрению. Органом зрения человека являет­ся глаз — один из самых совершенных и вместе с тем простых опти­ческих приборов. Как же устроен глаз? Почему некоторые люди плохо видят и как скорректировать их зрение? Как с особенностями чело­веческого глаза связано производство мультипликационных фильмов?

1. Знакомимся со строением глаза

Глаз человека имеет шарообразную форму (рис. 3.66). Диаметр глаз­ного яблока около 2,5 см. Снаружи глаз покрыт плотной непрозрачной обо­лочкой — склерой. Передняя часть склеры переходит в прозрачную роговую оболочку — роговицу, которая действует как собирающая линза и обеспе­чивает 75 % способности глаза преломлять свет.

Читайте также:  Зарядка для глаз при ухудшении зрения

Рис. 3.66. Строение глаза

С внутренней стороны склера покрыта сосудистой оболочкой, состоящей из кровеносных сосудов, питающих глаз. В передней части глаза сосудистая обо­лочка переходит в радужную оболочку, которая неодинаково окрашена у разных людей. В радужной оболочке есть круглое отверстие — зрачок. Зрачок сужается в случае усиления интенсивности света и расширяется в случае ослабления.

Способность глаза приспосабливаться к различной яркости наблюдае­мых предметов называют адаптацией.

За зрачком расположен хрусталик, который представляет собой двояко­выпуклую линзу. Хрусталик благодаря скрепленным с ним мышцам может изменять свою кривизну, а следовательно, и оптическую силу.

Сосудистая оболочка с внутренней стороны глаза покрыта сетчаткой — разветвлениями светочувствительного нерва. Самая чувствительная часть сетчатки расположена прямо напротив зрачка и называется желтым пятном. Место, где зрительный нерв входит в глаз, невосприимчиво к свету, поэтому получило название слепого пятна. В получении изображения так­же принимает участие стекловидное тело — прозрачная студенистая мас­са, которая заполняет пространство между хрусталиком и сетчаткой. Свет, попадающий на поверхность глаза, преломляется в роговице, хрусталике и стекловидном теле. В результате на сетчатке получается действитель­ное, перевернутое, уменьшенное изображение предмета (рис. 3.67).

Рис. 3.67. Изображение, которое получается на сетчатке глаза, — действительное, перевернутое, уменьшенное

Рис. 3.68. В спокойном состоя­нии фокус оптической системы здорового глаза расположен на сетчатке. В этом случае на сетчат­ке образуется четкое изображе­ние удаленных предметов

2. Узнаем, почему человек видит как удаленные предметы, так и расположенные рядом

Если человек имеет хорошее зрение, он видит четкими как далеко, так и близко рас­положенные предметы. Это происходит потому, что в случае изменения расстояния до предме­та хрусталик глаза изменяет свою кривизну.

  • Способность хрусталика изменять свою кривиз­ну в случае изменения расстояния до рассмат­риваемого предмета, называют аккомодацией.

Если человек смотрит на довольно удален­ные предметы, в глаз попадают параллельные лучи — в этом случае глаз наиболее расслаблен. (Заметьте, что, задумавшись, человек смотрит как будто вдаль!) Чем ближе расположен пред­мет, тем сильнее напрягается глаз. Наименьшее расстояние, на котором глаз видит предмет, практически не напрягаясь, называют рассто­янием наилучшего зрения. Для людей с нор­мальным зрением это расстояние равно прибли­зительно 25 см. Именно на таком расстоянии человек с хорошим зрением читает книгу.


3. Выясняем, что такое близорукость и дальнозоркость и какие есть способы их коррекции

Чтобы лучше разобраться, что происхо­дит в оптической системе глаза в случае близо­рукости и дальнозоркости и как корректиру­ются эти недостатки зрения, представим такую ситуацию. Три человека, один из которых имеет нормальное зрение, у второго — близорукость, а у третьего — дальнозоркость, смотрят на одни и те же предметы, расположенные довольно да­леко,— например, на звезды. (В этом случае мы можем не принимать во внимание аккомода­цию, ведь глаза у всех троих расслаблены.)

У человека с нормальным зрением фокус оптической системы глаза в спокойном (нена­пряженном) состоянии расположен на сетчат­ке, т.е. параллельные лучи, попадающие в глаз, после преломления в оптической системе глаза собираются на сетчатке (рис. 3.68), и изобра­жение предметов на ней будет четким.

Иная ситуация у людей, имеющих близорукость или дальнозоркость. Близорукость — это недостаток зрения, в случае которого фокус оптической системы глаза в спокойном (нена­пряженном) состоянии расположен перед сет­чаткой (рис. 3.69, а). Это происходит потому, что в случае близорукости угол преломления светового пучка в оптической системе глаза оказывается большим, чем у человека с нор­мальным зрением. Поэтому изображение пред­метов на сетчатке будет нечетким, размытым.


Рис. 3.69 В случае близорукости в спокойном состоянии глаза фокус F оптической системы глаза расположен перед сетчат­кой (о). Изображение удаленных предметов на сетчатке получа­ется нечетким. Для коррекции близорукости используют очки с рассеивающими линзами (б)

Расстояние наилучшего зрения в случае близорукости меньше 25 см. Именно поэтому близорукий человек, чтобы рассмотреть пред­мет в руках, подносит его близко к глазам. Близорукость корректируется ношением очков с рассеивающими линзами (рис. 3.69, б).

Дальнозоркость — это недостаток зрения, в случае которого фокус оптической системы глаза в спокойном (ненапряженном) состоянии расположен за сетчаткой (рис. 3.70, а). Это про­исходит потому, что в случае дальнозоркости угол преломления светового пучка в оптической сис­теме глаза оказывается меньшим, чем у человека с нормальным зрением. Изображение предметов на сетчатке также будет нечетким, размытым.

Расстояние наилучшего зрения в случае даль­нозоркости больше, чем 25 см, поэтому, рассматривая предмет в руках, человек отодвигает его от глаз. Дальнозоркость корректируется ношением очков с собирающими линзами (рис. 3.70, б).

Рис. 3.70. В случае дальнозоркос­ти в спокойном состоянии глаза фокус F оптической системы глаза расположен за сетчаткой (о). Изоб­ражение удаленных предметов на сетчатке получается нечетким. Для коррекции дальнозоркости используют собирающие линзы (б)

4. Знакомимся с инерцией зрения

Если быстро перемещать в темноте «бенгальский огонь», то наблюда­тель увидит светящиеся фигуры, образованные «огневым контуром». Раз­ноцветные лампочки карусели во время быстрого вращения, сливаясь, об­разуют кольца. Наши глаза все время мигают, а поскольку эти движения довольно быстрые, мы не замечаем, что на определенный промежуток вре­мени предмет, на который мы смотрим, становится невидимым.

Все эти явления можно объяснить так называемой инерцией зрения. Суть в том, что после того как изображение предмета исчезает с сетчатки глаза (предмет убирают, перестают его освещать, заслоняют непрозрачным экраном и т. п.), зрительный образ, вызванный этим предметом, сохраняет­ся на протяжении 0,1 с.

Зрительную инерцию широко используют в анимационном кино. Кар­тинки на экране очень быстро (24 раза в секунду) сменяют друг друга, во время их смены экран не освещается, но зри­тель этого не замечает — он просто видит ряд чередующихся картинок. Таким образом на эк­ране создается иллюзия движения. (А теперь представьте, сколько картинок нужно нарисо­вать художникам, чтобы получить полнометражный мультипликационный фильм!)

На инерции зрения также базируется при­менение стробоскопа. (Стробоскоп представля­ет собой источник света, излучающий световые вспышки через определенные, очень малые промежутки времени.) Во время фотографиро­вания объектов, освещеннных стробоскопом, мы получаем стробоскопические фотографии (рис. 3.71).

Рис. 3.71 Стробоскопическая фотография гимнаста, выполняю­щего упражнения на перекладине

С точки зрения физики, глаз представляет собой оптическую систе­му, основными элементами которой являются роговица, хрусталик и стек­ловидное тело.

В результате преломления света в этой оптической системе на светочувст­вительной поверхности глазного дна — сетчатке — образуется уменьшен­ное, действительное, перевернутое изображение предмета.

Если оптическая система глаза собирает лучи перед сетчаткой, то изоб­ражение предмета на сетчатке будет размытым — такой дефект зрения называется близорукостью. Близорукость корректируют ношением очков с рассеивающими линзами.

Если оптическая система глаза слабо преломляет лучи, то продолжения лучей пересекаются за сетчаткой — такой дефект зрения называется даль­нозоркостью. Дальнозоркость корректируют ношением очков с собирающи­ми линзами.

После того как изображение предмета исчезает с сетчатки глаза, зри­тельный образ, вызванный этим предметом, сохраняется в сознании челове­ка на протяжении 0,1 с. Это свойство называют инерцией зрения.

1. Опишите строение человеческого глаза и назначение отдельных его элементов.

2. Какие характеристики имеет изображение, возникаю­щее на сетчатке глаза?

3. Как изменяется диаметр зрачка в случае уменьшения освещенности?

4. Почему человек с нормальным зрением может одинаково четко видеть как далеко, так и близко расположенные предметы?

5. Чему равно расстояние наилучшего зрения для челове­ка с нормальным зрением?

6. Какой дефект зрения называется близо­рукостью? Как его можно скорректировать?

7. Какой дефект зрения называется дальнозоркостью? Как его можно скорректировать?

8. Ка­кое свойство зрения называют инерцией зрения?

1. Почему кривизна хрусталика глаза рыбы большая, чем у человека?
2. Оптическая сила нормального глаза изменяется от 58,6 до 70,6 дптр. Определите, во сколько раз изменяется при этом фокусное расстоя­ние глаза.
3. На каком минимальном расстоянии от глаза следует расположить зеркальце, чтобы увидеть четкое изображение глаза?
4. Оптическая сила линз бабушкиных очков -2,5 дптр. Каково фокус­ное расстояние этих линз? Какой дефект зрения имеет бабушка?
5. Почему, чтобы лучше видеть, близорукий человек щурит глаза?
6. Почему даже в чистой воде человек без маски плохо видит?
7. Мальчик читает книгу, держа ее на расстоянии 20 см от глаз. Опре­делите оптическую силу линз, которые необходимы мальчику для чтения на расстоянии наилучшего зрения (при условии нормально­го зрения).

1. Предложите способ, с помощью которого можно определить, какой дефект зрения (близорукость или дальнозоркость) корректируют те или иные очки. Постарайтесь найти несколько разных очков (по­просите у домашних, соседей и т. д.) и убедитесь в правильности своего способа.

2. Проверьте на опыте свойство глаза изменять диаметр зрачка в за­висимости от освещенности рассматриваемого объекта. Для наблю­дения изменений диаметра зрачка воспользуйтесь зеркалом.

В конце прошлого века ученым удалось установить, что преломление светового луча, попадающего в глаз, различно в разных точках глаза из-за того, что поверх­ность роговицы не является идеально гладкой, а хрус­талик не является однородным (см. рисунок).

Для исправления зрения была предложена методика сглаживания поверхности роговицы с помощью лазерного излучения. Однако чтобы эта технология действитель­но заработала, надо было знать, какое именно количество вещества хрусталика следует удалить в конкретном месте, т. е. было необходимо измерить реальный профиль хрусталика. Тем не менее глаз не стоит спо­койно, а следовательно, надо было сделать это измерение очень быстро (за доли секунды).

В Германии, Японии, Испании и США началось неистовое соревнование ученых и инже­неров за создание такого измерительного прибора. Однако первый в мире рейтрейсинговый аберрометр был создан коллективом украинских ученых под руководством профессо­ра Василия Молебного.

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. — X.: Издательство «Ранок», 2007. — 192 с.: ил.

Читайте также:  Методики исследования органа зрения и его придатков

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Глаз и зрение

Глаз — орган зрения животных и человека. Глаз человека состоит из глазного яблока, соединенного зрительным нервом с головным мозгом, и вспомогательного аппарата (веки, слезные органы и мышцы, двигающие глазное яблоко).

Глазное яблоко (рис. 94) защищено плотной оболочкой, называемой склерой. Передняя (прозрачная) часть склеры 1 называется роговицей. Роговица является самой чувствительной наружной частью человеческого тела (даже самое легкое ее касание вызывает мгновенное рефлекторное смыкание век).

За роговицей расположена радужная оболочка 2, которая у людей может иметь разный цвет. Между роговицей и радужной оболочкой находится водянистая жидкость. В радужной оболочке есть небольшое отверстие — зрачок 3. Диаметр зрачка может изменяться от 2 до 8 мм, уменьшаясь на свету и увеличиваясь в темноте.

За зрачком расположено прозрачное тело, напоминающее двояковыпуклую линзу, — хрусталик 4. Снаружи он мягкий и почти студенистый, внутри более твердый и упругий. Хрусталик окружен мышцами 5, прикрепляющими его к склере.

За хрусталиком расположено стекловидное тело 6, представляющее собой бесцветную студенистую массу. Задняя часть склеры — глазное дно — покрыто сетчатой оболочкой (сетчаткой) 7. Она состоит из тончайших волокон, устилающих глазное дно и представляющих собой разветвленные окончания зрительного нерва.

Как возникают и воспринимаются глазом изображения различных предметов?

Свет, преломляясь в оптической системе глаза, которую образуют роговица, хрусталик и стекловидное тело, дает на сетчатке действительные, уменьшенные и обратные изображения рассматриваемых предметов (рис. 95). Попав на окончания зрительного нерва, из которых состоит сетчатка, свет раздражает эти окончания. По нервным волокнам эти раздражения передаются в мозг, и у человека появляется зрительное ощущение: он видит предметы.

Изображение предмета, возникающее на сетчатке глаза, является перевернутым. Первым, кто это доказал, построив ход лучей в оптической системе глаза, был И. Кеплер. Чтобы проверить этот вывод, французский ученый Р. Декарт (1596—1650) взял глаз быка и, соскоблив с его задней стенки непрозрачный слой, поместил в отверстии, проделанном в оконном ставне. И тут же на полупрозрачной стенке глазного дна он увидел перевернутое изображение картины, наблюдавшейся из окна.

Почему же тогда мы видим все предметы такими, как они есть, т. е. неперевернутыми? Дело в том, что процесс зрения непрерывно корректируется мозгом, получающим информацию не только через глаза, но и через другие органы чувств. В свое время английский поэт Уильям Блейк (1757—1827) очень верно подметил:

Посредством глаза, а не глазом
Смотреть на мир умеет разум.

В 1896 г. американский психолог Дж. Стреттон поставил на себе эксперимент. Он надел специальные очки, благодаря которым на сетчатке глаза изображения окружающих предметов оказывались не обратными, а прямыми. И что же? Мир в сознании Стреттона перевернулся. Все предметы он стал видеть вверх ногами. Из-за этого произошло рассогласование в работе глаз с другими органами чувств. У ученого появились симптомы морской болезни. В течение трех дней он ощущал тошноту. Однако на четвертые сутки организм стал приходить в норму, а на пятый день Стреттон стал чувствовать себя так же, как и до эксперимента. Мозг ученого освоился с новыми условиями работы, и все предметы он снова стал видеть прямыми. Но, когда он снял очки, все опять перевернулось. Уже через полтора часа зрение восстановилось, и он снова стал видеть нормально.

Любопытно, что подобная приспосабливаемость характерна лишь для человеческого мозга. Когда в одном из экспериментов переворачивающие очки надели обезьяне, то она получила такой психологический удар, что, сделав несколько неверных движений и упав, пришла в состояние, напоминающее кому. У нее стали угасать рефлексы, упало кровяное давление и дыхание стало частым и поверхностным. У человека ничего подобного не наблюдается.

Однако и человеческий мозг не всегда способен справиться с анализом изображения, получающегося на сетчатке глаза. В таких случаях возникают иллюзии зрения — наблюдаемый предмет нам кажется не таким, каков он есть на самом деле (рис. 96).

Есть еще одна особенность зрения, о которой нельзя не сказать. Известно, что при изменении расстояния от линзы до предмета меняется и расстояние до его изображения. Каким же образом на сетчатке сохраняется четкое изображение, когда мы переводим свой взгляд с удаленного предмета на более близкий?

Оказывается, те мышцы, которые прикреплены к хрусталику, способны изменять кривизну его поверхностей и тем самым оптическую силу глаза. Когда мы смотрим на далекие предметы, эти мышцы находятся в расслабленном состоянии и кривизна хрусталика оказывается сравнительно небольшой. При переводе взгляда на близлежащие предметы глазные мышцы сжимают хрусталик, и его кривизна, а следовательно, и оптическая сила увеличиваются.

Способность глаза приспосабливаться к видению как на близком, так и на более далеком расстоянии называется аккомодацией (от лат. accomodatio — приспособление). Благодаря аккомодации человеку удается фокусировать изображения различных предметов на одном и том же расстоянии от хрусталика — на сетчатке глаза.

Однако при очень близком расположении рассматриваемого предмета напряжение мышц, деформирующих хрусталик, усиливается, и работа глаза становится утомительной. Оптимальное расстояние при чтении и письме для нормального глаза составляет около 25 см. Это расстояние называют расстоянием ясного (или наилучшего) зрения.

Какое преимущество дает зрение двумя глазами?

Во-первых, именно благодаря наличию двух глаз мы можем различать, какой из предметов находится ближе, какой дальше от нас. Дело в том, что на сетчатках правого и левого глаза получаются отличающиеся друг от друга изображения (соответствующие взгляду на предмет как бы справа и слева). Чем ближе предмет, тем заметнее это различие. Оно и создает впечатление разницы в расстояниях. Эта же способность зрения позволяет видеть предмет объемным, а не плоским.

Во-вторых, благодаря наличию двух глаз увеличивается поле зрения. Поле зрения человека изображено на рисунке 97, а. Для сравнения рядом с ним показаны поля зрения лошади (рис. 97, в) и зайца (рис. 97, б). Глядя на эти рисунки, легко понять, почему хищникам так трудно подкрасться к этим животным, не выдав себя.

Зрение позволяет людям видеть друг друга. Возможно ли самому видеть, но для других быть невидимым? Впервые на этот вопрос попытался ответить в своем романе «Человек-невидимка» английский писатель Герберт Уэллс (1866—1946). Человек окажется невидимым после того, как его вещество станет прозрачным и обладающим той же оптической плотностью, что и окружающий воздух. Тогда отражения и преломления света на границе человеческого тела с воздухом не будет, и он превратится в невидимку. Так, например, толченое стекло, имеющее на воздухе вид белого порошка, тут же исчезает из виду, когда его помещают в воду — среду, обладающую примерно той же оптической плотностью, что и стекло.

В 1911 г. немецкий ученый Шпальтегольц пропитал препарат мертвой ткани животного специально приготовленной жидкостью, после чего поместил его в сосуд с такой же жидкостью Препарат стал невидимым.

Однако человек-невидимка должен быть невидимым на воздухе, а не в специально приготовленном растворе. А этого достигнуть не удается.

Но допустим, что человеку все-таки удастся стать прозрачным. Люди перестанут его видеть. А сможет ли он сам их видеть? Нет, ведь все его части, в том числе и глаза, перестанут преломлять световые лучи, и, следовательно, никакого изображения на сетчатке глаза возникать не будет. Кроме того, для формирования в сознании человека видимого образа световые лучи должны поглощаться сетчаткой, передавая ей свою энергию. Эта энергия необходима для возникновения сигналов, поступающих по зрительному нерву в мозг человека. Если же у человека-невидимки глаза станут совершенно прозрачными, то этого происходить не будет. А раз так, то он вообще перестанет видеть. Человек-невидимка будет слепым.

Герберт Уэллс не учел этого обстоятельства и потому наделил своего героя нормальным зрением, позволяющим ему, оставаясь незамеченным, терроризировать целый город.

. 1. Как устроен глаз человека? Какие его части образуют оптическую систему? 2. Охарактеризуйте изображение, возникающее на сетчатке глаза. 3. Как передается изображение предмета в мозг? Почему мы видим предметы прямыми, а не перевернутыми? 4. Почему, переводя взгляде близкого предмета на удаленный, мы продолжаем видеть его четкий образ? 5. Чему равно расстояние наилучшего зрения? 6. Какое преимущество дает зрение двумя глазами? 7. Почему человек-невидимка должен быть слепым?

Оптическая система глаза человека. Оптическая система глаза состоит из.

Подавляющую долю информации человек получает через органы зрения – глаза. Оптическая система глаза человека, хотя и уступает по своим характеристикам зрению некоторых животных, на самом деле весьма совершенна. Из высших творений природы лишь человек и приматы могут воспринимать цвета. Известно, что оптическая система глаза взрослого человека позволяет различать до ста и более цветовых оттенков. К слову сказать, довольно долго фотографическая техника не могла тягаться с человеческим органом зрения по чёткости и качеству изображения.

Немного основ оптики

Фокус, знакомый по урокам школьной физики: два затемнённых помещения, одно из которых имеет сквозные отверстия небольшого диаметра в стенах. За стеной помещается мощный источник света, например солнце. Вместо первого отверстия, которое призвано служить точечным источником световых лучей, иногда используют компактный электрический осветительный прибор.

Если между точечным источником света и вторым отверстием поместить какую-либо фигуру из непрозрачного материала, то на стене (экране) за вторым отверстием появляется изображение данного предмета, перевёрнутое на 180°.

Читайте также:  Может ли из за зубов портиться зрение

Тот же фокус, только намного качественнее, проделывает со световыми лучами собирательная (бывают и рассеивающие) линза. Дело в том, что каждая мельчайшая точка любого предмета, будучи освещённой сама, становится источником освещения, маленьким солнышком, излучая во все стороны (отражая) некоторую часть упавшего на неё света. Так, предметы, которые кажутся нам красными, поглощают все световые волны видимого диапазона, кроме красных. Белые вещи и материалы почти ничего не поглощают из видимого диапазона, отражая в окружающее пространство большую часть света, а чёрные, напротив, используют для нагрева почти всё, что на них упало.

Как глаза и другие оптические системы ловят свет

Рассмотрим физические принципы устройства фотоаппарата. Дело в том, что точно так же работает оптическая система глаза. Физика одинаково действует в столь разных на первый взгляд устройствах. Объектив (собирающая линза) улавливает свет, исходящий от каждой точки какого-либо предмета, и фокусирует его на экране – фоточувствительной пластине.

Пластина поделена на крохотные участки – пикселы. В современном цифровом фотоаппарате пикселами являются светочувствительные элементы, каждый из которых запоминает свои яркость и цвет. Когда все точки складываются вместе, как мозаика, получается изображение.

Чем мельче эти элементы, чем больше их помещается на единицу площади, тем более качественная картинка получается в итоге.

Орган зрения человека (оптика)

Как ни странно, но точно так же, как устроено творение рук человеческих – фотоаппарат, работает и оптическая система глаза. Построение изображения происходит по точно тем же принципам.

Изображение собирается и фокусируется нашим природным «объективом», роль которого выполняет хрусталик. В зависимости от расстояния, на котором необходимо сфокусировать взгляд, он может изменять свою кривизну, становясь более выпуклым при рассматривании близких предметов (вдевание нитки в иголку) или менее выпуклым, если мы смотрим вдаль.

Прежде чем попасть на хрусталик, световые лучи проходят через отверстие в «диафрагме» – радужной оболочке глаза. Причём диаметр отверстия зависит от интенсивности освещения – он может увеличиваться при недостаточном освещении в ночное время или уменьшаться ярким солнечным днём, предохраняя сетчатку глаза от излишнего излучения.

И, конечно же, оптическая система глаза не может обойтись без экрана – светочувствительной пластины, её роль играет сетчатка, на которую и проецируется изображение.

Биология человеческого органа зрения

Однако человеческий глаз – не технический инструмент, а прежде всего – биологический орган.

Кроме элементов, непосредственно участвующих в построении изображения, оптическая система глаза образована:

— роговицей, за которой расположена передняя камера, заполненная жидкостью, на 99% состоящей из обычной воды;

— стекловидным телом — обладает хорошей светопропускной способностью, но имеет низкий коэффициент преломления и поэтому в формировании изображения не участвует;

— цинновыми связками — передают усилие от особых мышц, которые, напрягаясь и расслабляясь, изменяют кривизну хрусталика, таким образом оптическая система глаза «настраивается» на близкие или далёкие предметы;

— глазным нервом – это своеобразный «кабель-канал», по которому изображение передаётся мозгу; в оболочке глазного нерва также проходят сосуды, снабжающие глаз кровью.

Впрочем, некоторые составляющие глаза заслуживают отдельного разговора.

Объектив человеческого глаза – хрусталик

Оптическая система глаза состоит из различных тканей, но самая уникальная, пожалуй, та, из которой состоит «объектив» нашей зрительной системы – хрусталик. Этот орган не содержит ни нервных волокон, ни сосудов, он обладает феноменальной прозрачностью, имеет чуть желтоватый цвет. Роговое вещество, из которого состоит хрусталик, имеет очень высокий коэффициент преломления. Если сравнивать его с увеличительным стеклом, то его сила будет около 18 диоптрий. Однако тело хрусталика не совсем однородно, оно состоит из переплетенных в разных направлениях волокон.

Именно этим объясняется то, что человек, глядя на далёкую звезду (абсолютную точку для человеческого глаза), видит отходящие от неё лучи.

Итак, изображение захвачено хрусталиком и сфокусировано на сетчатке. Как же она устроена?

Строение её напоминает матрицу цифрового фотоаппарата. Вместо светочувствительных единиц (пикселов) глазное дно выстлано особыми светочувствительными клетками – палочками и колбочками. Считается, что палочки задействуются в условиях недостаточного освещения и не различают цветов. Цветное зрение анатомы связывают с колбочками. Таким образом, оптическая система глаза имеет два параллельных канала для дневного и ночного видения.

Чудеса зрения в природе

Особым зрением обладают змеи, большинство из них реагирует на инфракрасное излучение. Это приспособление позволяет им с успехом охотиться на теплокровных животных в абсолютной темноте.

А вот зрение бабочек «занесло» их в другую сторону: благодаря тому, что чешуйчатокрылые воспринимают часть ультрафиолетового диапазона, они с лёгкостью обнаруживают цветочную пыльцу – свою основную пищу.

Прекрасно видят в темноте и гекконы. Но не в инфракрасном цвете, как змеи, а в том же спектральном диапазоне, что и человек. Разница в том, что сетчатка геконов чувствительнее к свету в 350 раз! Просто полноценный прибор ночного видения, созданный природой!

Настоящий наблюдательный прибор имеет в своём распоряжении хамелеон. Мало того, что он может обозревать, не поворачивая головы, все 360° окружающего мира, так он ещё может одним глазом, как дальномером, измерять расстояние до предметов.

А вот обладателем самых больших в мире глаз является гигантский кальмар. Дело в том, что среда его обитания – океанская пучина от километра и глубже. Солнечного света в такой бездне практически нет, но своими глазами размером со средний арбуз кальмар видит своего заклятого врага кашалота на расстоянии до 1000 метров.

Глаз как оптическая система с точки зрения физики

Глаз человека представляет собой сложную оптическую систему, которая по своему действию аналогична оптической системе фотоаппарата. Схематическое устройство глаза представлено на рис. 3.4.1. Глаз имеет почти шарообразную форму и диаметр около . Снаружи он покрыт защитной оболочкой 1 белого цвета – склерой . Передняя прозрачная часть 2 склеры называется роговицей . На некотором расстоянии от нее расположена радужная оболочка 3, окрашенная пигментом. Отверстие в радужной оболочке представляет собой зрачок . В зависимости от интенсивности падающего света зрачок рефлекторно изменяет свой диаметр приблизительно от 2 до 8 мм, т.е. действует подобно диафрагме фотоаппарата. Между роговицей и радужной оболочкой находится прозрачная жидкость. За зрачком находится хрусталик 4 – эластичное линзоподобное тело. Особая мышца 5 может изменять в некоторых пределах форму хрусталика, изменяя тем самым его оптическую силу. Остальная часть глаза заполнена стекловидным телом. Задняя часть глаза – глазное дно, оно покрыто сетчатой оболочкой 6, представляющей собой сложное разветвление зрительного нерва 7 с нервными окончаниями – палочками и колбочками , которые являются светочувствительными элементами.

Рисунок 3.4.1.

Лучи света от предмета, преломляясь на границе воздух–роговица, проходят далее через хрусталик (линзу с изменяющейся оптической силой) и создают изображение на сетчатке.

Роговица, прозрачная жидкость, хрусталик и стекловидное тело образуют оптическую систему, оптический центр которой расположен на расстоянии около от роговицы. При расслабленной глазной мышце оптическая сила глаза приблизительно равна , при максимальном напряжении мышцы – .

Основная особенность глаза как оптического инструмента состоит в способности рефлекторно изменять оптическую силу глазной оптики в зависимости от положения предмета. Такое приспособление глаза к изменению положения наблюдаемого предмета называется аккомодацией .

Область аккомодации глаза можно определить положением двух точек:

  • дальняя точка аккомодации определяется положением предмета, изображение которого получается на сетчатке при расслабленной глазной мышце. У нормального глаза дальняя точка аккомодации находится в бесконечности.
  • ближняя точка аккомодации – расстояние от рассматриваемого предмета до глаза при максимальном напряжении глазной мышцы. Ближняя точка нормального глаза располагается на расстоянии от глаза. С возрастом это расстояние увеличивается.

Кроме этих двух точек, определяющих границы области аккомодации, у глаза существует расстояние наилучшего зрения , т. е. расстояние от предмета до глаза, при котором удобнее всего (без чрезмерного напряжения) рассматривать детали предмета (например, читать мелкий текст). Это расстояние у нормального глаза условно полагают равным .

При нарушении зрения изображения удаленных предметов в случае ненапряженного глаза могут оказаться либо перед сетчаткой ( близорукость ), либо за сетчаткой ( дальнозоркость ) (рис. 3.4.2).

Рисунок 3.4.2.

Расстояние наилучшего зрения у близорукого глаза меньше, а у дальнозоркого больше, чем у нормального глаза. Для исправления дефекта зрения служат очки. Для дальнозоркого глаза необходимы очки с положительной оптической силой (собирающие линзы), для близорукого – с отрицательной оптической силой (рассеивающие линзы).

Для наблюдения удаленных предметов оптическая сила линз должна быть такой, чтобы параллельные пучки фокусировались на сетчатке глаза. Глаз должен видеть через очки мнимое прямое изображение удаленного предмета, находящееся в дальней точке аккомодации данного глаза. Если, например, дальняя точка аккомодации близорукого глаза находится на расстоянии , то применяя формулу тонкой линзы получим:

, , следовательно, дптр.

Следует отметить, что у дальнозоркого глаза дальняя точка аккомодации мнимая, т. е. ненапряженный глаз фокусирует на сетчатке сходящийся пучок лучей. Потому при рассмотрении удаленных предметов очки для дальнозоркого глаза должны превращать параллельный пучок лучей в сходящийся, т. е. обладать положительной оптической силой.

Очки для «ближнего зрения» (например, для чтения) должны создавать мнимое изображение предмета, находящегося на расстоянии (т. е. на расстоянии наилучшего зрения нормального глаза), на расстоянии наилучшего зрения данного глаза. Пусть, например, близорукий глаз имеет расстояние наилучшего зрения . По формуле тонкой линзы получим: , , следовательно, дптр. Вследствие сужения области аккомодации у многих людей очки для ближнего зрения должны обладать большей (по модулю) оптической силой по сравнению с очками для рассматривания удаленных предметов.

Рис. 3.4.3 иллюстрирует коррекцию дальнозоркого и близорукого глаза с помощью очков.

Источники:
  • http://cknow.ru/knowbase/323-369-fotoapparat-kak-opticheskiy-pribor-glaz-kak-opticheskaya-sistema.html
  • http://www.edufuture.biz/index.php?title=%D0%93%D0%BB%D0%B0%D0%B7_%D0%BA%D0%B0%D0%BA_%D0%BE%D0%BF%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0
  • http://phscs.ru/physics9g/sight
  • http://www.syl.ru/article/228161/new_opticheskaya-sistema-glaza-cheloveka-opticheskaya-sistema-glaza-sostoit-iz
  • http://physics.ru/courses/op25part2/content/chapter3/section/paragraph4/theory.html