Меню Рубрики

Фокусировка изображения у людей с нормальным зрением

Глазное яблоко состоит из трех слоев (оболочек):

  • наружная – белочная – защищает глаз, видоизменение – роговица;
  • средняя – сосудистая – снабжает глаз кровью, видоизменения – радужная оболочка и ресничная мышца;
  • внутренняя – сетчатка – содержит зрительные рецепторы.

Роговица – это самая передняя часть глаза. Роговица прозрачная (пропускает свет) и выпуклая (преломляет свет).

За роговицей находится радужная оболочка, в центре которой расположено отверстие – зрачок. Радужная оболочка состоит из мышц, которые могут изменять размер зрачка – так регулируется количество света, поступающего в глаз. В состав радужной оболочки входит пигмент меланин, который поглощает вредные ультрафиолетовые лучи, от его количества зависит «цвет глаз».

За зрачком находится хрусталик – прозрачная капсула, заполненная жидкостью. За счет собственной упругости хрусталик стремится стать выпуклым, при этом глаз фокусируется на близких предметах. При расслаблении ресничной мышцы связки, удерживающие хрусталик, натягиваются и он становится плоским, глаз фокусируется на дальних предметах. Такое свойство глаза называется аккомодация.

За хрусталиком располагается стекловидное тело, заполняющее глазное яблоко изнутри (преломляет свет). Это третий, последний компонент преломляющей (оптической) системы глаза (роговица – хрусталик – стекловидное тело), в результате ее работы на сетчатке получается уменьшенное и перевернутое изображение.

Сетчатка находится за стекловидным телом, на внутренней поверхности глазного яблока. Она состоит из зрительных рецепторов – палочек и колбочек. Палочки находятся в основном на периферии сетчатки, они дают черно-белое изображение, но зато им достаточно слабого освещения. Колбочки сосредоточены в центре сетчатки, они дают цветное изображение, требуют яркого света. В сетчатке имеются два пятна: желтое (в нем самая высокая концентрация колбочек) и слепое (в нем нет рецепторов, из этого места выходит зрительный нерв).

Нужны ли очки при миопии

Для лечения суставов наши читатели успешно используют Око-плюс. Видя, такую популярность этого средства мы решили предложить его и вашему вниманию.
Подробнее здесь…

Очень важно для каждого человека жить и видеть мир незатуманенным. Но не у всех это получается, потому что возникают различные зрительные болезни. Миопия — это болезнь глаз, которая еще называется близорукостью. Люди, у которых присутствует такое заболевание, очень слабо различают объекты, располагающиеся на отдаленном расстоянии. Происходит это потому, что восприятие изображения выполняется на плоскости, которая располагается перед областью сетчатки, а не непосредственно на ней. Главная причина — нарушается система оптики глаза и его длина. Среди офтальмологов это заболевание считается очень распространенным. При миопии люди не видят отчетливо предметы, щурятся, подносят читаемую книгу ближе к глазам, что только усугубляет ситуацию. Применяя современные методы лечения, можно восстановить зрение.

Виды миопии и их характеристика

Различают несколько видов близорукости:

Для осевой миопии характерно растяжение глазного яблока и его увеличение. Этот вид близорукости встречается чаще всего. Патологические или злокачественные изменения сетчатки — это признаки осложненной миопии. Причины появления этого вида близорукости — наследственные. Осложненная миопия отличается прогрессирующим и агрессивным течением заболевания. У людей с ночной миопией отмечается нарушение зрения в темное время суток или если помещение плохо освещено. Зрачок при этом сильно расширяется, что препятствует четкости изображения. В дневное время зрение такое же, как и у здоровых людей. Редкий вид миопии, названный псевдоблизорукостью, встречается из-за спазма цилиарной мышцы.

Любой вид миопии может привести к необратимым последствиям и потере зрения. Поэтому при первых признаках заболевания следует обратиться к офтальмологу, особенно в детском или юношеском возрасте, чтобы избежать серьезных последствий.

Способы лечения

Самым древним и наиболее распространенным способом улучшить зрение при миопии считаются упражнения для глаз, массаж и очки. Но не всем людям назначается носить их постоянно. Если степень миопии слабая, то очки можно надевать только по необходимости. При частом использовании глазные мышцы расслабляются, что приводит к более интенсивному снижению зрения и увеличению миопии. Нередко встречается сочетание миопии и астигматизма, но привыкать к очкам в таком случае очень тяжело. При таком соотношении офтальмологи назначают сложные очки, у которых цилиндрические стекла. Иногда случается так, что оба глаза видят изображения разного размера. Мозг не может сфокусировать предметы воедино, поэтому отвергает изображение одного из глаз. В таких случаях может возникнуть косоглазие, которое потребует более длительного лечения.

Одним из способов эффективного лечения миопии помимо очков считается применение контактных линз. Располагаются они на внешней поверхности глаза. Между передними поверхностями и контактными линзами присутствует только слой слезы. Благодаря этому создается единая оптическая система. Работа глазных мышц — как у здорового человека, плюс ко всему ослабленная аккомодация повышается. Именно по этим причинам контактные линзы при миопии — это средство не только коррекционное, но и эффективный метод лечения близорукости. Кроме того, люди, страдающие близорукостью, должны выполнять упражнения, которые помогут восстановить зрение. Зарядка для глаз и упражнения несложные, в 70% гимнастика позволяет восстановить на зрение 50% и не надевать в дальнейшем очки.

Как выбрать очки

Коррекцию миопии в основном проводят очками. Этот способ намного дешевле, нежели покупка контактных линз. Медицина не стоит на месте — в последнее время появились очки, которые имеют рассеивающие линзы. То есть они тонкие в центральной части и утолщенные по краям. Главное предназначение очков — это перефокусировка изображения на сетчатку. Благодаря этому близорукий человек видит четко на любом отдаленном расстоянии.

Выбрать очки нужно с помощью рекомендации офтальмолога, но при выборе оправы следует отталкиваться от желания человека и формы лица. Очки — не только помогают корректировать и восстанавливать зрение при миопии. Они должны приносить человеку эстетическое удовольствие. В прошлом очки от близорукости имели не очень красивый вид, чего нельзя сказать о форме нынешних очков. Важно учитывать, какой выбрать материал для оправы — пластиковый или металлический. Традиционный материал для изготовления линз очков — минеральное стекло и пластик. Очки из пластика намного легче, обладают хорошей устойчивостью к царапинам и ударам. Они могут быть поликарбонатными, высокоиндексными, асферическими, фотохромными.

Самые эффективные линзы для очков — поликарбонатные. Они очень прочные, что немаловажно в детском возрасте. Дети часто разбивают стеклянные очки, поэтому выбор лучше остановить на пластиковых. Бывают случаи, когда очки подобраны неправильно. Если наблюдается головокружение, тошнота, головная боль, следует обратиться к офтальмологу для проверки совместимости очков и глаз человека. Такие явления могут возникнуть в адаптационный период, когда человеку назначили коррекцию зрения с помощью очков в первый раз. К этому нужно будет просто привыкнуть. Со временем человек перестанет ощущать дискомфорт.

Если по истечении 8-11 дней головные боли не беспокоят и зрение не затуманенное, значит, очки подобраны правильно.

Витаминное лечение миопии

Близорукость лучше лечить комплексно, то есть применяя все существующие методики лечения — очки, упражнения. Одна из них — правильное питание и насыщение организма витаминами, которые помогают бороться с этим недугом. На сегодняшний день можно приобрести в аптеках множество разных витаминных комплексов, которые помогут укрепить зрение. Витамины важны не только для всего организма, но и для зрения в частности. Люди, страдающие миопией, должны не только ходить в очках, но и включить в рацион следующие продукты:

Причем употребление этих продуктов должно быть не сезонным, а круглогодичным. Главная цель витаминного комплекса — это укрепление сосудов сетчатки и восстановление нарушенного кровообращения. Основные витамины для глаз при миопии:

  • витамин С (для укрепления стенок сосудов, восстановления кровообращения и снятия напряжения);
  • бета-каротин (помогает сбалансировать выработку пигментов зрения);
  • цинк (уменьшает внутриглазное давление);
  • кальций (способствует регенерации соединительных тканей);
  • витамин В (восстанавливает передачу нервных импульсов);
  • витамин А (для образования фоточувствительного зрительного пигмента — родопсина);
  • витамин Е (защищает мембраны).

Употребляя в пищу продукты с содержанием таких витаминов, можно не только предупредить развитие близорукости, но и эффективно откорректировать зрение. Продукты, в которых содержатся витамины для глаз:

  • Витамин С:
    • лимон;
    • киви;
    • апельсины и мандарины;
    • капуста;
    • петрушка;
    • зеленые листовые овощи;
    • зелень;
    • сельдерей;
    • помидор;
    • малина.
  • Бета-каротин:
    • вареная морковь;
    • сливы;
    • помидор;
    • зелень;
    • салат и щавель;
    • красный сладкий перец;
    • грейпфрут;
    • черная смородина;
    • персик;
    • крыжовник;
    • хурма.
  • Цинк:
    • морепродукты — омары, крабы, моллюски, осьминоги, креветки, красная и черная икра;
    • тыквенные и подсолнечные семечки (не жареные);
    • кедровые и грецкие орехи;
    • бобовые;
    • пшеничная мука;
    • цветная капуста, брокколи;
    • яблоки;
    • груши;
    • вишня.
  • Кальций:
    • бобовые;
    • ананасы;
    • огурцы;
    • шиповник;
    • черный виноград;
    • картофель;
    • зелень;
    • редис;
    • крапива;
    • зерна пшеницы
    • кефир и простокваша.
  • Витамины группы В:
    • рыба;
    • мясо;
    • дрожжи;
    • молочные продукты;
    • капуста;
    • свекла;
    • печень;
    • сливочное масло;
    • яйца;
    • гречка и овсянка.
  • Витамины для глаз группы А:
    • говяжья печень;
    • тыква;
    • абрикосы;
    • зелень;
    • яичные желтки;
    • рыбий жир.
  • Витамины группы Е:
    • печень;
    • яйца;
    • молочные продукты;
    • шиповник;
    • семена льна;
    • капуста и щавель.

Зарядка и гимнастика для глаз как эффективное лечение миопии

Для того чтобы увеличить эффект корректировки зрения при миопии, нужно надевать не только очки и принимать витамины для глаз, но и выполнять упражнения для глаз. Главное — это не изнурительная зарядка для глаз, а частота и регулярность при выполнении упражнений. Очень важный момент — гимнастика для глаз должна проводиться за 1,5-2 часа до приема пищи. В зависимости от степени близорукости результат выполнения упражнений может быть заметен уже через 7-8 недель. Зарядку нужно проводить, не перенапрягая глаза. Если человек чувствует даже небольшой дискомфорт, лучше сразу прекратить упражнения и расслабить глаза. Начинать необходимо с 2-4 упражнений в день и увеличивать их количество ежедневно. Упражнения для глаз могут быть следующими:

  • часто моргать в течение 7-8 сек (повторять с перерывом в 15-20 сек 3 раза);
  • зажмуривать глаза на 2-3 сек, столько же держать их открытыми (повтор 5-7 раз);
  • смотреть на дальние предметы, переводя взгляд на ближние объекты, в течение 7 сек (повторить 2-3 раза);
  • вытянуть руку и смотреть на указательный палец, приближая и отдаляя его (повторять 10-12 раз);
  • переводить взгляд с пола на потолок, но только медленно, голова в этом случае неподвижна.

Все упражнения нужно выполнять, сняв очки.

Такая зарядка для глаз может выполняться как профилактика глазных заболеваний, упражнения нужно делать с обязательными перерывами. И стоит помнить, что главное — это регулярность.

Массаж — способ избавиться от близорукости

Несомненно, очки, упражнения и гимнастика очень эффективны при близорукости. Массаж при таком заболевании будет эффективен в комплексе с другими видами лечения. Особенно важно делать массаж детям не только как способ вернуть зрение, но и как профилактический метод. Точечный массаж не занимает много времени, но если регулярно делать упражнения, то зрение гарантированно улучшится. Упражнения (массаж), которые нужно выполнять, заключаются в воздействии на определенные точки на теле, улучшающие кровообращение сетчатки, что немаловажно при миопии. Выполнять массаж нужно в удобном положении — лучше сидя. Точки располагаются во внутреннем уголке глаза, на запястье, между сухожилиями, возле правого сухожилия и на внешней стороне возле сгиба локтя. Массаж заключается в надавливании и массировании точек по часовой стрелке.

Очень часто миопией страдают дети, которым заболевание передается по наследству. Риск того, что у ребенка, один из родителей которого страдает близорукостью, разовьется заболевание, 99%. Но при правильном подходе к проблеме можно избежать болезни. Наследуют дети не саму болезнь, а слабые глазные ткани, как итог — при физиологическом росте ткань растягивается и нарушается ее функция, что и приводит к близорукости. Младший школьный возраст входит в группу риска. В таком возрасте переутомление глаз является очень опасным для ребенка. Предупредить или остановить миопию можно с помощью массажа. При массировании определенных точек улучшается кровоснабжение глаза, что позволит не носить ребенку очки. Проводить массаж нужно, надавливая на точки, которые были указаны выше. Обязательно делать упражнения нужно на обеих руках.

Читайте также:  Объясните с точки зрения молекулярной теории процесс кристаллизации

В медицинской практике применяют специальные очки-массажеры, в которые встроены массажные силиконовые стержни и магниты, помогающие расслабить переутомленные глаза. Стержни выполняют массажные движения акупунктурных точек вокруг глаз. Как следствие — восстанавливается кровообращение, что важно для хорошего питания глазных тканей. Усталости после массажа очками нет. Встроенные магниты выполняют функцию воздействия на глазную область. Очки имеют несколько программ, массаж становится еще эффективнее. Интенсивность и частота вибраций регулируются. Делать массаж нужно, надевая очки 3-5 раз в день.

Фокусировка изображения у людей с нормальным зрением

В какой части глазного яблока происходит фокусировка изображения у людей с нормальным зрением?

1) в области жёлтого пятна

2) перед сетчаткой

4) в области слепого пятна

Глаз сам может производить фокусировку (аккомодацию), чтобы видеть близкие и отдаленные предметы. При нормальном зрении изображение фокусируется на сетчатку. Больше всего рецепторов (колбочек) в области желтого пятна (желтое пятно — участок наиболее ясного видения), но рецепторы расположены по всей сетчатке (кроме слепого пятна).

Под цифрой 4 — слепое пятно — один из участков сетчатки, который не имеет фоторецепторов и поэтому не воспринимает свет. Это место выхода зрительного нерва из сетчатки.

Под цифрой 2 — близорукость — неспособность четко видеть отдаленные предметы. В этом случае мышцы недостаточно расслабляют хрусталик, поэтому лучи света фокусируются перед сетчаткой и изображение на ней получается расплывчатым. Исправить этот недостаток можно с помощью контактных линз или очков с вогнутыми стеклами-линзами, которые рассеивают световой пучок.

Под цифрой 3 — дальнозоркость — неспособность четко видеть близкие предметы. У дальнозорких людей мышцы недостаточно сильно сжимают хрусталик, поэтому световые лучи фокусируются позади сетчатки и изображение тоже расплывается. От дальнозоркости помогают очки с выпуклыми стеклами, концентрирующими свет.

Нормальная фокусировка и движения глаз

Прежде чем при помощи зрения вы осознаете то, что видите, должна быть осуществлена сложная последовательность событий. Начинается все с формирования на сетчатке некоторого изображения. Наиболее понятная мозгу информация возникает при наличии резкой и четкой картинки, с заметными границами и формами. Четкость картинки обусловлена остротой зрения, часто связываемой с цифрой 1,0.

Что же означает эта цифра? Связана она с формулой угла зрения (1,0 — это 5 минут угловой дуги) и была выведена в прошлом веке Снелленом. Для определения остроты зрения по этой шкале используются специальные буквы, расположенные от пациента на расстоянии 5 метров. Выражение 0,5 означает, что то, что вы должны были бы видеть с расстояния 10 метров, вы видите только с 5 метров. Выражение 0,2 означает, что вы видите с 5 метров то, что должны были бы видеть с расстояния 25 метров.

Давайте на некоторое время забудем, что наш глаз — это живой орган, и будем рассматривать его как некую оптическую систему, в задачу которой входит сфокусировать на сетчатку изображение внешнего мира. Здесь нам не обойтись без термина «преломление», поэтому стоит его определить.

Лучи света движутся по прямой. Явление преломления заключается в том, что при прохождении через границу прозрачных сред с различной плотностью световые лучи изменяют свое направление. Это проще понять, если посмотреть сбоку на ложку в стакане воды (рис. 16).

Кажется, что на границах воды, воздуха и кромки стакана ложка «переломлена», и происходит это потому, что здесь мы имеем дело с тремя различными прозрачными средами — воздухом, стеклом и водой, так что на их границах лучи света несколько меняют свое направление.

В нашем глазу имеется несколько прозрачных сред с различной плотностью, которые свет должен преодолеть, прежде чем он попадет на сетчатку. Наибольшее преломление происходит на поверхности сферической роговицы, намного более плотной, чем воздух (если вам приходилось открывать глаза под водой, то вы знаете, что в этом случае все кажется расплывчатым: вода, будучи плотнее воздуха, преломляет лучи света по-другому).

Еще одним существенным преломляющим элементом в глазу является хрусталик. Если у роговицы контур фиксированный, то хрусталик может менять свою форму и тем самым угол преломления. Фактически он представляет собой изменяющуюся систему фокусировки, имеющую целью придать лучам света, приходящим от некоторого объекта, наилучший фокус независимо от расстояния между этим объектом глазом.

Работает эта система следующим образом. Когда вы смотрите на что-нибудь с расстояния около 5 метров, кривизна хрусталика остается минимальной с незначительным коэффициентом преломления. Когда вы смотрите на объект, расположенный на меньшем расстоянии, кривизна хрусталика увеличивается, сам он утолщается, увеличивая силу преломления и придавая тем самым световым лучам фокус. Подобное фокусирование хрусталика называется аккомодацией и управляется степенью резкости изображения на сетчатке глаза (рис. 17, а, б).

С возрастом хрусталик теряет свою эластичность и уже не справляется с фокусировкой лучей света от близлежащих объектов. Большинство людей начинают это чувствовать лет в сорок, им становятся нужны очки для чтения или бифокальные очки.

Очень важно то, что аккомодация обоих глаз должна быть одинаковой. Наши два глаза не могут работать независимо друг от друга.
Если общая сила рефракции глаза точно соответствует размерам глазного яблока, то получается идеально сфокусированное изображение (типичные расстройства зрения мы здесь не учитываем). Так как глаз является живым органом, то в его частях, имеющих дело с преломлением света, могут быть самые разные отклонения. Малейшая погрешность в радиусе роговицы (до одной десятой миллиметра) или в размерах глазного яблока (до одной трети миллиметра) может вывести изображение из фокуса.

Кроме того, что четкое изображение должно быть сфокусировано на сетчатке, оно должно также попасть в очень небольшую определенную область на ней. Чтобы лучше видеть, глаз должен удерживать изображение в центре желтого пятна. Это совсем не простая задача, если учесть, что глаз находится в постоянном движении и объект, на который вы смотрите, тоже может двигаться.

Чтобы постоянно удерживать объект в фокусе, мозгу приходится играть в бесконечные игры типа «холодно-горячо». К внешним мышцам глазного яблока идет непрерывный поток нервных импульсов, причем к обоим глазам сигналы направляются так, чтобы они работали синхронно. Обычно они просто не могут работать независимо друг от друга (немного попрактиковавшись, можно научиться одной рукой поглаживать живот, а другой похлопывать себя по голове, но никакие упражнения не помогут вам научиться двигать одним глазом вверх-вниз, а вторым — влево-вправо).

Но обратите внимание, задача по управлению движением глаз еще более сложна! Есть два принципиально различных типа движений глаз:

  1. когда оба глаза двигаются в одном и том же направлении, то есть, например, вправо или вниз;
  2. когда глаза сходятся к переносице, чтобы удержать фокусировку объекта на желтом пятне сетчатки.

Все эти движения осуществляются постоянно и почти в неограниченном количестве сочетаний. Пока вы читаете эти строки, ваши глаза непрерывно передвигаются вправо-влево, иногда опускаясь вниз, и одновременно они перемещаются навстречу друг другу.

Эти движения глаз совсем несложно увидеть, если рядом есть другой человек. Подержите карандаш в полуметре от его носа, а затем начните медленно приближать карандаш к нему. Если он будет следить взглядом за карандашом, то вы заметите, как его глаза сходятся к переносице. Человек с хорошей сходимостью (конвергенцией) глаз должен быть в состоянии удерживать некоторое время взглядом карандаш на расстоянии около 10 сантиметров, прежде чем его глаза «перескочат» на что-то другое.

Рассматривание объектов вблизи и чтение требуют как аккомодации хрусталика, так и конвергенции глаз. В ходе эволюции нашей зрительной системы обе эти функции слились воедино. Определенная аккомодация вызывает определенную конвергенцию, и наоборот, что создает для нервной системы довольно существенную «экономию», но в то же время, так как в живых органах происходит множество самых разнообразных процессов, это делает зрительную систему подверженной самым разным проблемам, которые мы подробнее обсудим в последующих главах.

Глаз как фотоаппарат

Видимый свет это электромагнитные волны, на которые настроено наше зрение. Можно сравнить человеческий глаз с антенной радиоприемника, вот только чувствителен он будет не к радиоволнам, а к другой полосе частот. Как свет человек воспринимает электромагнитные волны с длиной примерно от 380 нм до 700 нм. (Нанометр равен одной миллиардной части метра). Волны именно этого диапазона называют видимым спектром; с одной стороны к нему примыкает ультрафиолетовое излучение (столь милое сердцу любителей загара), с другой — инфракрасный спектр (который мы сами способны генерировать в виде выделяемого телом тепла). Человеческий глаз и головной мозг (самый быстрый процессор из существующих) в режиме реального времени визуально восстанавливают видимый окружающий мир (часто не только видимый, но и воображаемый, но об этом — в статье про Гештальт).

Для фотографов и фотолюбителей сравнение с радиоприемником кажется бессмысленным: уж коль проводить аналогии, так с фототехникой — присутствует определенное сходство: глаза и объектива, мозга и процессора, ментальной картинки и изображения, сохраненного в файле. Зрение и фотографию часто сравнивают на форумах, мнения высказываются самые разные. Решил и я скомпилировать некоторую информацию и напроводить аналогий.

Попробуем найти аналогии в конструкции:

Изображение, фактически формируемое в глазу, перевернуто (как в камере обскуре); его коррекцией занимается особый отдел мозга, переворачивающий картинку «с головы на ноги». Новорожденные видят мир без такой коррекции, поэтому они иногда переводят взгляд или тянутся в направлении, противоположном движению, за которым следят. Эксперименты со взрослыми, которым надели очки, переворачивающие изображение в «неоткорректированный» вид, показали, что они легко приспосабливаются к обратной перспективе. Испытуемым, снявшим очки, требовалось аналогичное время, чтобы заново «приспособится».

То, что «видит» человек, на самом деле можно сравнить с постоянно обновляемым потоком информации, которая собирается в картинку мозгом. Глаза находятся в постоянном движении, собирая информацию – они сканируют поле зрения и обновляют изменившиеся детали, сохраняя статическую информацию.

Область изображения, на которой человек может сфокусироваться в каждый отдельный момент времени составляет лишь около полу градуса от поля зрения. Она соответствует «желтому пятну», а остальная часть изображения остается не в фокусе, все более размываясь к краям поля зрения.

Изображение формируется из данных, собранных светочувствительными рецепторами глаза: палочками и колбочками, расположенными на задней внутренней его поверхности – сетчатке. Палочек больше раз в 14 — около 110-125 миллионов палочек против 6-7 миллионов колбочек.

Колбочки в 100 раз менее чувствительны к свету, чем палочки, но воспринимают цвета и гораздо лучше палочек реагируют на движение. Палочки — клетки первого типа — чувствительны к интенсивности света и к тому, как мы воспринимаем формы и контуры. Поэтому колбочки в большей степени отвечают за дневное зрение, а палочки – за ночное. Существуют три подтипа колбочек, отличающиеся по восприимчивости к разным длинам волн или основным цветам, на которые они настроены: колбочки S-типа для коротких волн — синий, M-типа для средних — зеленый и L-типа для длинных – красный. Чувствительность соответствующих колбочек к цветам не одинакова. То есть, количество света, необходимого для того, чтобы произвести (одинаковое по интенсивности воздействие) такое же ощущение интенсивности различна для S, M и L колбочек. Вот вам и матрица цифрового фотоаппарата – даже фотодиодов зелёного цвета в каждой ячейке в два раза больше, чем фотодиодов других цветов, в результате разрешающая способность такой структуры максимальна в зелёной области спектра, что соответствует особенностям человеческого зрения.

Мы видим цвет преимущественно в центральной части поля зрения — именно там расположены почти все колбочки, чувствительные к цветам. В условиях недостатка освещения, колбочки теряют свою актуальность и информация начинает поступать от палочек, воспринимающих все в монохроме. Именно поэтому, многое из того, что мы видим ночью, выглядит черно-белым.

Читайте также:  Стильные оправы для очков для коррекции зрения

Но и при ярком свете, края поля зрения остаются монохромными. Когда Вы смотрите прямо вперед, и на краю вашего поля зрения появляется автомобиль, вы не сможете определить его цвет до тех пор пока глаз на мгновение не посмотрит в его сторону.

Палочки чрезвычайно светочувствительны – они способны зарегистрировать свет всего одного фотона. При стандартной освещенности глаз регистрирует около 3000 фотонов в секунду. А поскольку центральная часть поля зрения населена колбочками, ориентированными на дневной свет, глаз начинает видеть больше деталей изображения не по центру, как только солнце опускается ниже горизонта.

Это легко проверить наблюдая за звездами в ясную ночь. По мере адаптации глаза к недостатку освещения (полная адаптация занимает около 30 минут), если вы смотрите в одну точку, вы начинаете видеть группы слабых звезд в стороне от точки, куда вы смотрите. Если перевести на них взгляд, то они пропадут, а новые группы появятся в области, где ваш взгляд был сфокусирован до перемещения.

Многие животные (а птицы – так почти все) имеют гораздо большее число колбочек по сравнению со средним человеком, что позволяет им обнаружить мелких животных и другую добычу с большой высоты и расстояния. И наоборот, у ночных животных и существ, которые охотятся ночью больше палочек, что улучшает ночное зрение.

А теперь аналогии.

Каковы фокусные расстояния человеческого глаза?

Зрение – намного более динамичный и емкий процесс, чтобы без дополнительных сведений сравнивать его с объективом с переменным фокусным расстоянием.

Изображение, получаемое мозгом от двух глаз, имеет угол поля зрения в 120-140 градусов, иногда чуть меньше, редко — больше. (по вертикали до 125 градусов и по горизонтали — 150 градусов, резкое изображение обеспечивается только областью желтого пятна в пределах 60-80 градусов). Посему в абсолютных величинах глаза похожи на широкоугольный объектив, но общая перспектива и пространственные отношения между объектами в поле зрения схожи с картинкой, получаемой с «нормального» объектива. В отличие от традиционно принятого мнения, что фокусные «нормального» объектива лежат в пределах 50 – 55 мм, фактическое фокусное расстояние нормального объектива составляет 43мм.

Приведя общий угол поля зрения в систему 24*36 мм, получаем – с учетом множества факторов, таких как условия освещения, расстояние до предмета, возраст и здоровье человека – фокусное расстояние от 22 до 24 мм (фокусное 22.3 мм получило наибольшее число голосов как ближайшее к картинке человеческого зрения).

Иногда встречаются цифры в 17 мм фокусного (или точнее в 16,7 мм). Такое фокусное получается при отталкивании от формируемого внутри глаза изображения. Входящий угол дает эквивалентное фокусное в 22-24 мм, исходящий — 17 мм. Это как посмотреть в бинокль с обратной стороны – объект окажется не ближе, а дальше. Отсюда и расхождение в цифрах .

Главное — сколько мегапикселей?

Вопрос несколько некорректный, ведь картинка, собираемая мозгом, содержит куски информации, собранные не одновременно, это потоковая обработка. Да и по вопросу методов и алгоритмов обработки пока ясности нет. А нужно еще учитывать возрастные изменения и состояние здоровья.

Обычно упоминается 324 мегапикселя – цифра, основанная на поле зрения 24 мм объектива на 35 мм фотоаппарате (90 градусов) и разрешающей способности глаза. Если постараться найти некую абсолютную цифру, приняв каждую палочку с колбочкой за полноценный пиксель, то получим около 130 мегапикселей. Цифры кажутся некорректными: фотография стремиться к детализации «от края и до края», а человеческий глаз в отдельно взятый момент времени «резко и детализировано» видит лишь малую толику сцены. Да и объем информации (цвет, контраст, детализация) значительно меняется в зависимости от условий освещения. Мне больше по душе оценка в 20 Мп: ведь «желтое пятно» оценивается где-то в 4 – 5 мегапикселей, остальная площадь – размыта и недетализирована (на периферии сетчатки находятся в основном палочки, объединенные в группы до нескольких тысяч вокруг ганглиозных клеток – своеобразных усилителей сигнала).

Где тогда предел разрешения?

По одной из оценок, 74-мегапиксельный файл, распечатанный в полноцветную фотографию с разрешением 530 ppi и размером 35 на 50 см (13*20 дюймов), при просмотре с расстояния в 50 см соответствует максимальной детализации, к которой способен человеческий глаз.

Глаз и ISO

Еще один вопрос, на который практически невозможно однозначно ответить. Дело в том, что в отличие от пленки и матриц цифровых фотоаппаратов, у глаза нет естественной (или базовой) чувствительности, а его способность приспосабливаться к условиям освещения просто удивительна – мы видим и на залитом солнце пляже и в тенистой аллее в сумерках.

Так или иначе, упоминается, что при ярком солнечном свете ISO человеческого глаза равно единице, а при низкой освещенности — порядка ISO 800.

Динамический диапазон

Сразу ответим и на вопрос о контрастности/динамическом диапазоне: при ярком свете контрастность человеческого глаза превышает 10 000 к 1 – величина недостижимая ни для пленки, ни для матриц. Ночной динамический диапазон (рассчитанный по видимым глазу — при полной луне в поле зрения — звездам) достигает миллиона к одному.

Диафрагма и выдержка

Если отталкиваться от полностью расширенного зрачка, максимальная диафрагма человеческого глаза составляет около f/2.4; по другим оценкам от f/2.1 до f/3.8. Многое зависит от возраста человека и его состояния здоровья. Минимальная диафрагма – насколько наш глаз способен «прикрыть диафрагму», когда смотрит на яркую снежную картинку или под солнцем наблюдает за игроками в пляжный волейбол — составляет от f/8.3 до f/11. (Максимальные изменения размера зрачка для здорового человека — от 1,8 мм до 7,5 мм).

Что касается выдержки, то человеческий глаз легко обнаруживает вспышки света длительностью в 1/100 секунды, а в экспериментальных условиях – до 1/200 секунды и короче в зависимости от окружающего освещения.

Битые и горячие пиксели

В каждом глазу существует слепое пятно. Точка, в которую сходится информация от колбочек и палочек, прежде чем отправиться в мозг для пакетной обработки, называется верхушкой зрительного нерва. На этой «верхушке» палочек и колбочек нет – получается немаленькое слепое пятно – группа битых пикселей.

Если интересно, проведите небольшой эксперимент: закройте левый глаз и смотрите правым прямо на значок «+» на рисунке снизу, постепенно приближаясь к монитору. На определенном расстоянии – где-то 30-40 сантиметров от изображения – вы перестанете видеть значок «*». Также можно заставить исчезнуть «плюс», если смотреть на «звездочку» левым глазом, закрыв правый. На зрение эти слепые пятна особо не влияют – мозг заполняет пробелы данными – очень напоминает процесс избавления от битых и горячих пикселей на матрице в реальном времени.

Не хочется о недугах, но необходимость включения в статью хоть одной тестовой мишени заставляет. Да и вдруг кому-нибудь поможет вовремя распознать начинающиеся проблемы со зрением. Итак, возрастная макулодистрофия (ВМД) поражает желтое пятно, отвечающее за остроту центрального зрения – в середине поля появляется слепое пятно. Проверку зрения легко осуществить самостоятельно при помощи «сетки Амслера» — листа бумаги в клетку, размером 10*10 см с черной точкой посередине. Посмотрите на точку в центре «сетки Амслера». Справа на рисунке показан пример того, как должна выглядеть сетка Амслера в здоровом зрении. Если линии рядом с точкой выглядят нечеткими, есть вероятность наличия ВМД и стоит обратиться к окулисту.

Про глаукомы и скотомы промолчим – хватит страшилок.

Если на сетке Амслера появляются затемнения или искажения линий — проверьтесь у окулиста.

Датчики фокусировки или желтое пятно.

Место наилучшей остроты зрения в сетчатке – называемое по присутствующему в клетках желтому пигменту «желтым пятном» — расположено напротив зрачка и имеет форму овала с диаметром около 5 мм. Будем считать, что «желтое пятно» — аналог крестообразного датчика автофокуса, отличающегося большей точностью, по сравнению с обычными датчиками.

Юстировка – близорукость и дальнозоркость

Или в более «фотографических» терминах: фронт-фокус и бэк-фокус – изображение сформировано до или после сетчатки. Для юстировки либо идут в сервис-центр (к врачам-офтальмологам) или используют микроподстройку: при помощи очков вогнутыми линзами при фронт-фокусе (близорукости, ака миопия) и очков с выпуклыми линзами при бек-фокусе (дальнозоркости, ака гиперметропии).

Напоследок

А каким глазом смотрим в видоискатель? В среде фотолюбителей редко упоминают про ведущий и ведомый глаз. Проверяется очень просто: возьмите непрозрачный экран с небольшим отверстием (лист бумаги с отверстием размером с монету) и посмотрите на отдаленный предмет через отверстие с расстояния 20-30 сантиметров. После этого – не смещая голову – поочередно смотрите правым и левым глазом, закрывая второй. Для ведущего глаза изображение не сместится. Работая с фотоаппаратом и смотря в него ведущим глазом, другой глаз можно не щурить.

И еще чуть интересных самостоятельных тестов от А. Р. Лурия:

Фокусировка изображения у людей с нормальным зрением

Строение и функции глаза.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.

Бинокулярное зрение.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение). Правая сторона сетчатки каждого глаза передает через зрительный нерв «правую часть» изображения в правую сторону головного мозга, аналогично действует левая сторона сетчатки. Затем две части изображения — правую и левую — головной мозг соединяет воедино. Так как каждый глаз воспринимает «свою» картинку, при нарушении совместного движения правого и левого глаза может быть расстроено бинокулярное зрение. Попросту говоря, у вас начнет двоиться в глазах или вы будете одновременно видеть две совсем разные картинки.

Основные функции глаза.

  • оптическая система, проецирующая изображение;
  • система, воспринимающая и «кодирующая» полученную информацию для головного мозга;
  • «обслуживающая» система жизнеобеспечения.

Глаз можно назвать сложным оптическим прибором. Его основная задача — «передать» правильное изображение зрительному нерву.

Роговица — прозрачная оболочка, покрывающая переднюю часть глаза. В ней отсутствуют кровеносные сосуды, она имеет большую преломляющую силу. Входит в оптическую систему глаза. Роговица граничит с непрозрачной внешней оболочкой глаза — склерой.

Передняя камера глаза — это пространство между роговицей и радужкой. Она заполнена внутриглазной жидкостью.

Радужка — по форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из мышц, при сокращении и расслаблении которых размеры зрачка меняются. Она входит в сосудистую оболочку глаза. Радужка отвечает за цвет глаз (если он голубой — значит, в ней мало пигментных клеток, если карий — много). Выполняет ту же функцию, что диафрагма в фотоаппарате, регулируя светопоток.

Зрачок — отверстие в радужке. Его размеры обычно зависят от уровня освещенности. Чем больше света, тем меньше зрачок.

Хрусталик — «естественная линза» глаза. Он прозрачен, эластичен — может менять свою форму, почти мгновенно «наводя фокус», за счет чего человек видит хорошо и вблизи, и вдали. Располагается в капсуле, удерживается ресничным пояском. Хрусталик, как и роговица, входит в оптическую систему глаза.

Стекловидное тело — гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза. Стекловидное тело поддерживает форму глазного яблока, участвует во внутриглазном обмене веществ. Входит в оптическую систему глаза.

Сетчатка — состоит из фоторецепторов (они чувствительны к свету) и нервных клеток. Клетки-рецепторы, расположенные в сетчатке, делятся на два вида: колбочки и палочки. В этих клетках, вырабатывающих фермент родопсин, происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т.е. фотохимическая реакция.

Читайте также:  Что такое жизнь с точки зрения славян

Палочки обладают высокой светочувствительностью и позволяют видеть при плохом освещении, также они отвечают за периферическое зрение. Колбочки, наоборот, требуют для своей работы большего количества света, но именно они позволяют разглядеть мелкие детали (отвечают за центральное зрение), дают возможность различать цвета. Наибольшее скопление колбочек находится в центральной ямке (макуле), отвечающей за самую высокую остроту зрения. Сетчатка прилегает к сосудистой оболочке, но на многих участках неплотно. Именно здесь она и имеет тенденцию отслаиваться при различных заболеваниях сетчатки.

Склера — непрозрачная внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся 6 глазодвигательных мышц. В ней находится небольшое количество нервных окончаний и сосудов.

Сосудистая оболочка — выстилает задний отдел склеры, к ней прилегает сетчатка, с которой она тесно связана. Сосудистая оболочка ответственна за кровоснабжение внутриглазных структур. При заболеваниях сетчатки очень часто вовлекается в патологический процесс. В сосудистой оболочке нет нервных окончаний, поэтому при ее заболевании не возникают боли, обычно сигнализирующие о каких-либо неполадках.

Зрительный нерв — при помощи зрительного нерва сигналы от нервных окончаний передаются в головной мозг.

Нарушение зрения: пресбиопия, гиперметропия, миопия.

Пресбиопия — возрастная дальнозоркость.

Пресбиопия (возрастная дальнозоркость) — состояние глаз, при котором ухудшается зрение на близком расстоянии, человеку становится сложно читать мелкий шрифт, особенно при плохом освещении, и выполнять любую работу вблизи.

Причины возникновения пресбиопии: Благодаря способности хрусталика изменять фокусное расстояние (аккомодации), человек способен различать предметы на разных расстояниях – как вблизи, так и вдали. С возрастом, хрусталик становится все более плотным и постепенно утрачивает свою эластичность, из-за чего снижается его способность увеличивать свою кривизну при рассмотрении близко расположенных от глаза предметов, способность глаза к аккомодации утрачивается. Кроме того, в результате процессов старения организма значительно ослабевают мышцы, удерживающие хрусталик. Это приводит к тому, что когда затылочные доли головного мозга, ответственные за зрение, посылают мышцам глаза сигнал, они уже не способны в достаточной степени изменять форму хрусталика, чтобы сфокусировать изображение близко расположенных предметов на сетчатку. В итоге человек видит предметы расплывчато и нечетко.

Симптомы пресбиопии:

  • Размытость и нечеткость зрения;
  • Трудность в рассматривании предметов вблизи;
  • Сложность при чтении, письме: мелкий шрифт неконтрастный, буквы расплываются;
  • При любой работе на близком расстоянии приходится отводить предмет на большое расстояние от глаз;
  • Частые головные боли;
  • Усталость глаз;

Группы риска. К сожалению, пресбиопия (возрастная дальнозоркость) является заболеванием, которое рано или поздно касается абсолютно всех людей, даже тех, кто всю жизнь имел прекрасное зрение. Пресбиопия является необратимым состоянием и у всех скорость прогрессирования этого заболевания протекает по-разному. У людей с дальнозоркостью пресбиопия, как правило, начинается значительно раньше, чем у всех остальных.

— вид рефракции глаза, при котором изображение предмета фокусируется не на определенной области сетчатки, а в плоскости за ней. Такое состояние зрительной системы приводит к нечеткости изображения, которое воспринимает сетчатка.

Причины дальнозоркости. Причиной дальнозоркости может быть укороченное глазное яблоко, либо слабая преломляющая сила оптических сред глаза. Увеличив ее, можно добиться того, что лучи будут фокусироваться там, где они фокусируются при нормальном зрении. С возрастом, зрение особенно вблизи все больше ухудшается из-за уменьшения аккомодативной способности глаза вследствие возрастных изменений в хрусталике — снижается эластичность хрусталика, ослабевают мышцы, удерживающие его, и как следствие снижается зрение. Именно поэтому возрастная дальнозоркость(пресбиопия) наличествует практически у всех людей после 40–50 лет.

Степени дальнозоркости.

Врачи офтальмологи выделяют три степени гиперметропии:

  • слабую — до + 2,0 D
  • среднюю — до + 5,0 D
  • высокую — свыше + 5,00 D

Близорукость (миопия)

— заболевание, при котором человек плохо различает предметы, расположенные на дальнем расстоянии. При близорукости изображение приходится не на определенную область сетчатки, а расположено в плоскости перед ней. Поэтому оно воспринимается нами как нечеткое. Происходит это из-за несоответствия силы оптической системы глаза и его длины. Обычно при близорукости размер глазного яблока увеличен (осевая близорукость), хотя она может возникнуть и как результат чрезмерной силы преломляющего аппарата (рефракционная миопия). Чем больше несоответствие, тем сильнее близорукость.

Степени близорукости.

Врачи-офтальмологи разделяют миопию на:

  • слабую (до 3,0 D (диоптрий) включительно),
  • среднюю (от 3,25 до 6,0 D),
  • высокую (более 6 D). Высокая миопия может достигать весьма значительных величин: 15, 20, 30 D.

Близорукие люди нуждаются в очках для дали, а многие и для близи: когда миопия превышает 6–8 и более диоптрий. Но очки, увы, не всегда корректируют зрение до высокого уровня, что связано с дистрофическими и др. изменениями в оболочках близорукого глаза. Близорукость может быть врожденной, а может появиться со временем, иногда начинает усиливаться —прогрессировать. При близорукости человек хорошо различает даже мелкие детали вблизи, но чем дальше расположен предмет, тем хуже он его видит. Задача любой коррекции близорукости — ослабить силу преломляющего аппарата глаза так, чтобы изображение пришлось на определенную область сетчатки (то есть вернулось «в норму»).

Ложная близорукость. Спазм аккомодации.

Цилиарное тело и цинновые связки отвечают за изменение эластичности хрусталика (принцип аккомодации)

Аккомодация (от лат. accomodatio — приспособление) — способность глаза к четкому видению на различных расстояниях. Она осуществляется при помощи согласованной работы трех элементов: ресничной (цилиарной) мышцы, ресничной связки и хрусталика.

Нормальное состояние глаза — это аккомодация вдаль, когда мышцы расслаблены. Для того, чтобы рассмотреть предмет вблизи, происходит сокращение ресничной (так называемой цилиарной) мышцы, расслабляются цинновы связки, в результате чего эластичный хрусталик увеличивает свою кривизну (становится выпуклым). Это приводит к возрастанию его оптической силы на 12–13 диоптрий, световые лучи сводятся в фокус на сетчатке и изображение становится четким. При отсутствии стимула к аккомодации ресничная мышца расслабляется, преломляющая сила глаза уменьшается, и он снова фокусируется на бесконечность. Происходит дезаккомодация (или аккомодация вдаль).

Аккомодация и возраст.

Одно из самых важных условий нормальной аккомодации — эластичность хрусталика. К сожалению, эластичность хрусталика меняется с возрастом. Самые высокие аккомодационные свойства у хрусталика — в детстве. С возрастом, эластичность хрусталика уменьшается и постепенно (обычно после 40–45 лет) снижается способность хорошо видеть вблизи, развивается так называемая пресбиопия — возрастная дальнозоркость. В большинстве случаев к 60–70 годам способность к аккомодации утрачивается полностью.

В сумеречное время аккомодация, обеспечивающая зрение вдаль, исчезает. Это обстоятельство является одной из причин плоховидения (некомфортного зрения) в вечернее и ночное время суток. Величина аккомодации в среднем равна 2,0 диоптрии, соответственно, в условиях низкой освещенности гиперметропия (дальнозоркость)уменьшается на 2,0 диоптрии, глаз без аномалии рефракции (эмметропический глаз) становится близоруким, аблизорукость увеличивается на 2,0 диоптрии.

Причины.

Основным стимулом для того, чтобы рефлекс аккомодации появился, является расфокусировка изображения на сетчатке в оптимальных условиях освещенности среды — световые лучи от близлежащего предмета фокусируются не на сетчатке (на сетчатке — рафокусировка), эта расфокусировка воспринятая мозгом, является импульсом к включению механизма аккомодации. Нервный импульс, проходя по глазодвигательному нерву, дает сигнал к сокращению ресничной мышцы. Мышца сокращается, натяжение цинновых связок уменьшается, в результате хрусталик изменяет свою кривизну. Вследствие этого, фокус изображения перемещается на сетчатку. Если взгляд будете переведен вдаль, то фокус изображения возвращается на сетчатку, сигнала о расфокусировке нет, нервного импульса нет, ресничная мышца расслабляется, натяжение цинновых связок усиливается, хрусталик, в итоге, уменьшает свою кривизну и вновь становится плоским.

Развитию спазма аккомодации способствует:

  • чрезмерные зрительные нагрузки (ТВ, компьютер, выполнение уроков в вечернее время);
  • плохое освещение рабочего места;
  • несоблюдение режима дня (отсутствие прогулок на свежем воздухе, занятий спортом, недостаточный сон);
  • несоответствие письменного стола и стула росту ребенка;
  • несоблюдение оптимального расстояния до книги (30–35 см.);
  • слабость шейных и спинных мышц;
  • нарушение кровоснабжения в шейном отделе позвоночника;
  • нерациональное питание, гиповитаминозы;
  • недостаточная физическая активность.

Показатели аккомодации.

Аккомодационную способность глаза выражают в диоптриях или линейных величинах.

  • Функциональный покой аккомодации — это отсутствие в поле зрения аккомодационного стимула
  • Область аккомодации — это расстояние между самой дальней (зрение вдаль) и ближайшей (зрение вблизи) точками ясного видения.
  • Объем аккомодации — это разница в показателях рефракции глаза (в диоптриях) при установке к ближайшей и самой дальней точкам ясного видения.
  • Запас (резерв) аккомодации — это неиспользованная часть объема аккомодации (в диоптриях) при установке глаза к точке фиксации.

Показатели аккомодации, полученные при исследовании каждого глаза в отдельности, называют абсолютными. А сразу обоих — относительными, т.к. выполняются при определенной конвергенци (сведении) зрительных осей.

Аккомодация тесно связана с конвергенцией. При одном и том же угле сходимости зрительных линий аккомодационные затраты у пациентов с различной (остротой зрения) не одинаковы. Так, например, у детей с некоррегированной гиперметропией (дальнозоркостью) средней и высокой степени может развиться аккомодационное сходящееся косоглазие.

Формы нарушения аккомодации.

  • астенопия
  • спазм аккомодации
  • паралич аккомодации
  • возрастное ослабление аккомодации (пресбиопия)

Аккомодативная астенопия — чаще всего развивается у людей с дальнозоркостью, астигматизмом при отсутствии или неправильно подобранной очковой коррекции. Такие пациенты предъявляют жалобы на быструю утомляемость глаз при чтении, нечеткость книжного текста, покраснение глаз и краев век, чувство жжения, зуда, инородного тела (так называемый хронический блефароконъюнктивит), головную боль, иногда сопровождающуюся рвотой. Основной причиной этого состояния является чрезмерное напряжение аккомодации вблизи, тогда как ее резервы ограничены. Лечение этого состояния — оптимальная очковая или контактная коррекция аномалий рефракции.

Спазм аккомодации — чаще всего встречается у детей и молодых людей. Это нарушение работы глазной (цилиарной) мышцы и, как следствие — потеря способности четко различать предметы как вблизи, так и вдали. В офтальмологии под спазмом аккомодации понимается излишне стойкое напряжение аккомодации, обусловленное таким сокращением ресничной мышцы, которое не исчезает под влиянием условий, когда аккомодация не требуется. По некоторым данным, каждый шестой школьник страдает подобным нарушением.

Паралич и парез аккомодации — как правило, имеют нейрогенную природу или могут возникнуть вследствие травмы, отравления. У людей с нормальной остротой зрения и дальнозорких ухудшается зрение вблизи. У близоруких людей острота зрения падает не столь резко, а иногда и вовсе не изменяется. При параличе сокращается объем аккомодации, утрачиваются ее резервы.

Возрастное ослабление аккомодации (пресбиопия) — физиологическое явление, которое связано с возрастной эволюцией хрусталика, его уплотнением и постепенной потерей эластичных свойств. Лечение — подбор оптимальной коррекции для близи в соответствии с возрастом и исходной рефракцией.

Проявления спазма аккомодации.

  • быстрая усталость при работе вблизи;
  • чувство жжения, рези, покраснение глаз;
  • картина вблизи становится менее четкой, изображение вдали как бы расплывается, иногда возникает двоение;
  • ребенок быстрее устает на занятиях, снижается успеваемость в школе;
  • появление головных болей, которые многие расценивают как возрастную перестройку организма.

Продолжительность этого состояния может длиться от нескольких месяцев до нескольких лет.

Профилактика и лечение.

В настоящее время спазм аккомодации рассматривается как одна из основных причин развития близорукости у детей. Постоянное сокращение цилиарной мышцы сопровождается недостаточностью кровоснабжения и ухудшением ее питания. Снижение кровотока, в свою очередь, приводит к слабости аккомодации и развитию хориоретинальных дистрофий. Поэтому очень важен комплексный подход в диагностике спазма аккомодации, его возможных причин и назначение адекватного лечения. Сегодня спазм аккомодации можно лечить не только закапыванием капель, расширяющих зрачок и упражнениями для глаз , но и использовать специальные компьютерные программы, разработанные для снятия зрительного напряжения, различные виды лазер-, магнито- и электростимуляции. Очень полезно 2 раза в год проходить курс общего массажа с акцентом на шейно-воротниковую зону. В питание ребенка должны быть включены продукты, богатые витаминами и микроэлементами. Ранняя профилактика и лечение спазма аккомодации позволят предотвратить развитие близорукости.

Источники:
  • http://lechenie-zreniya.ru/zrenie/v-kakoj-chasti-glaznogo-yabloka-proishodit-fokusirovka-izobrazheniya-u-lyudej-s-normalnym-zreniem/
  • http://bio-oge.sdamgia.ru/test?pid=432
  • http://zreni.ru/articles/aboutvision/2910-normalnaya-fokusirovka-i-dvizheniya-glaz.html
  • http://www.vlador.com/main/%D0%B3%D0%BB%D0%B0%D0%B7-%D0%B8-%D1%84%D0%BE%D1%82%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D1%8F/
  • http://optika-spectr.ru/articles/stroenie-narushenie.html