Меню Рубрики

Диссоциация кислот оснований и солей с точки зрения тэд

Своё начало теория электролитов берёт ещё в первой половине XIX века, когда М. Фарадей провёл свои знаменитые опыты с растворами поваренной соли. Он установил, что абсолютно чистая вода очень плохо проводит электрический ток, но стоит добавить в неё несколько кристаллов соли, и проводимость тут же возрастает. Уже тогда родилось предположение, что соль распадается в воде на некие частицы, которые способны проводить электрический ток, однако, полноценная теория, описывающая все эти процессы в растворах, появилась гораздо позже.

Теория, основоположником которой явился Сванте Аррениус в период 1883—1887 гг., базируется на идее, что при попадании молекул растворимого вещества (электролита) в полярную или неполярную жидкость происходит их диссоциация на ионы. Электролитами называются соединения, которые в растворе самопроизвольно распадаются на ионы, способные к самостоятельному существованию. Количество образующихся ионов, их строение и величина заряда зависят только от природы диссоциировавшей молекулы.

Для использования теории в описании свойств растворения используется ряд допущений, а именно: предполагается, что диссоциация является неполной, ионы (их электронные оболочки) не реагируют друг с другом, а их поведение можно описать законом действующих масс в идеальных условиях. Если рассмотреть теоретическую систему, где электролит КА находится в фазовом равновесии с продуктами своей диссоциации — катионом К+ и анионом А-, то согласно закону действующих масс можно составить уравнение реакции диссоциации:

Константа равновесия, записанная, через концентрации веществ при изотермических условиях будет иметь следующее значение:

Кд = [K+] x [A-] / [KA] (2)

В этом случае (в уравнении 2), константа равновесия Кд, будет являться не чем иным, как константой диссоциации, значения [KA], [K+], [A-] в правой части — это равновесные концентрации электролита и его продуктов диссоциации.

Учитывая допущение теории Аррениуса, которые были применены автором, в частности, о неполноте диссоциации, вводится понятие степени диссоциации — α. Таким образом, если выразить концентрацию раствора С (моль/л), то на литр раствора приходится αС моль электролита (КА), а равновесная его концентрация может быть выражена, как (1-α)С моль/л. Из уравнения реакции (1) очевидно, что на αС моль электролита (КА) образуется такое же количество ионов К+ и А-. Если подставить все эти величины в уравнение (2) и провести ряд упрощений, то получим формулу константы диссоциации (степень диссоциации формула):

Это уравнение позволяет количественно определить величину степени электролитической диссоциации в разных растворах.

Теория Аррениуса дала развитие множеству научных направлений в химии: с её помощью были созданы первые теории кислот и оснований, были даны объяснения физико-химическим процессам в гомогенных системах. Тем не менее, она не лишена недостатков, которые в основном относятся к тому факту, что теория не учитывает межионные взаимодействия.

Классификация электролитов с примерами

Электролиты классифицируют на слабые и сильные, периодически выделяя группу электролитов средней силы. Сильные электролиты характеризуются тем, что распадаются в растворе полностью. Как правило — это сильные минеральные кислоты, например:

  • Азотная кислота — HNO3.
  • Хлороводородная кислота — HCl.
  • Хлорная кислота — HClO4.
  • Ортофосфорная кислота — H3PO4.

Сильными электролитами могут быть основания, например:

Основная масса сильных электролитов — это подавляющее большинство солей (NaCl, Na2SO4, Ca (NO3)2, CH3COONa, хлориды, сульфиды).

Слабые электролиты, напротив, в растворах гидратируют частично. К этой группе следует относить неорганические кислоты (H2CO3, H3BO3, H3AsO4), слабые основания (аммоний), некоторые соли (HgCl2), органические кислоты (CH3COOH, C6H5COOH), фенолы и амины. В неводных растворах одни и те же соединения могут являться и сильными и слабыми электролитами, таким образом, зависят от природы растворителя.

Диссоциация кислот, оснований и солей

Закономерности для кислот

При электрической диссоциации кислот в водных растворах обязательно в качестве катионов образуются положительно заряженные ионы водорода (Н+):

Если кислота многоосновная (например: уравнение диссоциации H2SO4), то диссоциация происходит последовательно, за каждый раз отщепляя один ион водорода:

H2SO4 → H + + HSO4- первая ступень — гидросульфат ион

HSO4- → H + + SO4- вторая ступень — сульфат ион

Процесс для многоосновной кислоты, как правило, протекает максимально по первой ступени, степень диссоциации последующих намного меньше.

Характеристика процесса для щелочей

При диссоциации щелочей в водных растворах обязательно образуется отрицательно заряженный гидроксил ион (ОН-):

Процесс для многокислотных оснований (пример — механизм диссоциации гидроксида магния) протекает многоступенчато аналогично многоосновным кислотам:

Mg (OH)2 → OH- + Mg (OH)+ первая ступень

Mg (OH)+ → OH- + Mg2+ вторая ступень

Существуют также случаи, когда в процессе диссоциации могут образовываться и катионы водорода, и гидроксил-анионы (при диссоциации амфолитов или амфотерных соединений, например, Zn, Al):

2OH- + Zn2+ + 2H2O ←→ Zn (OH)2 + H2O ←→ [Zn (OH)4]2- + 2H+

Правила протекания для кислых и основных солей

Для кислых солей, основная закономерность заключается в следующем — сначала диссоциируют катионы (положительно заряженные металлы), а только потом катионы водорода:

KHSO4 → K+ + HSO4- первая ступень

HSO4 — → H+ + SO4- вторая ступень

У основных солей, в первую очередь, переходят в раствор остатки кислоты, а уже затем гидроксил-ион:

BaOHCl → Cl- + Ba (OH)+ первая ступень

Ba (OH)+ → OH- + Ba2+ вторая ступень

Водородный показатель

Определение, сущность и значение

Процессы диссоциации могут протекать не только для растворенных веществ, но и растворителя. Так, вода является сама со себе слабым электролитом и для неё характерна диссоциация в очень незначительной степени. Уравнение процесса можно записать следующим образом:

Одна молекула воды диссоциирует на положительно заряженные ионы водорода и отрицательно заряженные анионы гидроксония. Именно концентрация этих ионов определяет уровень кислотности раствора — чем больше ионов гидроксония, тем более кислый раствор.

Концентрация ионов гидроксония в реальных растворах, как правило, очень мала (например: 5×10−6 г/л) и поэтому для удобства, это значение логарифмируют, а чтобы получить положительное значение, берут с обратным знаком. Кратко сформулируем строгое определение понятия «водородный показатель» или рН.

рН (водородный показатель) — это отрицательный натуральный логарифм концентрации ионов гидроксония, отражающий кислотность раствора.

Значения водородного показателя принято оценивать по шкале значений от 0 до 14, где 0 — наиболее кислый раствор, а 14 — наиболее щелочной. Нейтральным раствором (соответствующим рН чистой воды) считается раствор со значением 7. Для примера приводим несколько типичных растворов, имеющих характерные значения водородного показателя:

Значение рН Раствор
11 Нашатырный спирт
9,5 Гидроксид кальция
8,0 30% раствор поваренной соли
7,4 Плазма крови
7,0 Деионизированная вода
6,5 Молоко
5,5 Кофе
2,8 Уксус (раствор 5% концентрации)
0,1 Хлорная кислота (65%)

Значительно реже прибегают к использованию еще одного показателя — рОН. По своему смыслу он абсолютно аналогичен водородному показателю, за исключением того, что за основу берётся концентрация гидроксил-ионов.

Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации

Читайте также:

  1. I. 36. Состав, свойства и применение азотных удобрений.
  2. I. Первая группа теорий – детерминистские теории.
  3. IV. система педагогических исследований с методологической точки зрения
  4. PGP. Принцип функционирования. Свойства ключа.
  5. V2: 01.01. Предмет и метод экономической теории
  6. VIII . Механические свойства металлов. Диаграмма растяжения металлов.
  7. XV. Влияние углерода и постоянных примесей на свойства стали
  8. Абсолютные величины и их виды, познавательные свойства и условия применения в экономико-статистическом анализе.
  9. Автономные системы и свойства их решений.
  10. Азотирование и нитроцементация. Структура, свойства и области получения.
  11. Аксиомы теории вероятностей.
  12. Актуальность проблематики с точки зрения изменения роли ИТ в бизнесе и обществе

Кислоты основания соли с точки зрения электролитической диссоциации

Рассмотрим в свете теории электролитической диссоциации свойства веществ, которые в водных растворах проявляют свойства электролитов.

Кислоты. Для кислот характерны следующие общие свойства:

а) способность взаимодействовать с основаниями с образованием солей;

б) способность взаимодействовать с некоторыми металлами с выделением водорода;

в) способность изменять цвета индикаторов, в частности, вызывать красную окраску лакмуса;

При диссоциации любой кислоты образуются иокы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, мы должны объяснить присутствием гидратированных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т. д. С устранением ионов водорода, например при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода.

У сильных кислот, диссоциирующих нацело, свойства кислот проявляются в большей степени, у слабых — в меньшей. Чем лучше кислота диссоциирует, т. е. чем больше ее константа диссоциации, тем она сильнее.

Сравнивая данные, приведенные в табл. 12 и 14, можно заметить, что величины констант диссоциации кислот изменяются в очень широких пределах. В частности, константа диссоциации циановодорода много меньше, чем уксусной кислоты. И хотя обе эти кислоты — слабые, все же уксусная кислота значительно сильнее циановодорода. Величины первой и второй констант диссоциации серной кислоты показывают, что в отношении первой ступени диссоциации — сильная кислота, а в отношении второй — слабая. Кислоты, константы диссоциации которых лежат в интервале , иногда называют кислотами средней силы. К ним, в частности, относятся ортофосфорная и сернистая кислоты (в отношении диссоциации по первой ступени).

Основания. Водные растворы оснований обладают следующими общими свойствами:

а) способностью взаимодействовать с кислотами с образованием солей;

б) способностью изменять цвета индикаторов иначе, чем их изменяют кислоты (например, они вызывают синюю окраску лакмуса);

в) своеобразным «мыльным» вкусом.

Поскольку общим для всех растворов оснований является присутствие в них гидроксид-ионов, то ясно, что носителем основных свойств является гидроксид-ион. Поэтому с точки зрения теории электролитической диссоциации основания — это электролиты, диссоциирующие в растворах с отщеплением гидроксид-ионов.

Сила оснований, как и сила кислот, зависит от величины константы диссоциации. Чем больше константа диссоциации данного основания, тем оно сильнее.

Существуют гидроксиды, способные вступать во взаимодействие и образовывать соли не только с кислотами, но и с основаниями. К таким гидроксидам принадлежит гидроксид цинка. При взаимодействии его, например, с соляной кислотой получается хлорид цинка

а при взаимодействии с гидроксидом натрия — цинкат натрия;

Читайте также:  Где можно сделать операцию по зрению

Гидроксиды, обладающие этим свойством, называются амфотерными гидроксидами, или амфотерными электролитами. К таким гидроксидам кроме гидроксида цинка относятся гидроксиды алюминия, хрома и некоторые другие.

Явление амфотерности объясняется тем, что в молекулах амфотерных электролитов прочность связи между металлом и кислородом незначительно отличается от прочности связи между кислородом и водородом. Диссоциация таких молекул возможна, следовательно, по местам обеих этих связей. Если обозначить амфо-терный электролит формулой ROH, то его диссоциацию можно выразить схемой:

Таким образом, в растворе амфотериого электролита существует сложное равновесие, в котором участвуют продукты диссоциации как по типу кислоты, так и по типу основания.

Явление амфотерности наблюдается также среди некоторых органических соединений. Важную роль оно играет в биологической химии; например, белки — амфотерные электролиты.

Соли. Соли можно определить как электролиты, которые при растворении в воде диссоциируют, отщепляя положительные ионы, отличные от ионов водорода, и отрицательные ионы, отличные от гидроксид-ионов. Таких ионов, которые были бы общими для водных растворов всех солей, нет; поэтому соли и не обладают общими свойствами. Как правило, соли хорошо диссоциируют, и тем лучше, чем меньше заряды ионоз, образующих соль.

При растворении кислых солей в растворе образуются катионы металла, сложные анионы кислотного остатка, а также ионы, являющиеся продуктами диссоциации этого сложного кислотного остатка, в том числе ионы . Например, при растворении гидрокарбоната натрия диссоциация протекает согласно следующим уравнениям:

При диссоциации основных солей образуются анионы кислоты и сложные катионы, состоящие из металла и гидроксогрупп. Эти сложные катионы также способны к диссоциации. Поэтому в растворе основной соли присутствуют ионы . Например, при растворении хлорида гидроксомагния диссоциация протекает согласно уравнениям:

Таким образом, теория электролитической диссоциации объясняет общие свойства кислот присутствием в их растворах ионов водорода, а общие свойства оснований — присутствием в их растворах гидроксид-ионов. Это объяснение не является, однако, общим. Известны химические реакции, протекающие с участием кислот и оснований, к которым теория электролитической диссоциации неприменима.

В частности, кислоты и основания могут реагировать друг с другом, не будучи диссоциированы на ноны. Так, безводный хлороводород, состоящий только из молекул, легко реагирует с безводными основаниями. Кроме того, известны вещества, не имеющие в своем составе гидроксогрупп, но проявляющие свойства основании. Например, аммиак взаимодействует с кислотами и образует соли (соли аммония), хотя в его составе нет групп ОН. Так, с хлороводородом он образует типичную соль — хлорид аммония:

Изучение подобного рода реакций, а также реакций, протекающих в иеводиых средах, привело к созданию более общих представлений о кислотах и основаниях. К важнейшим из современных теории кислот и оснований принадлежит протонная теория, выдвинутая в 1923 г.

Согласно протонной теории, кислотой является донор протона, т. е. частниа (молекула или ион), которая способна отдавать ион водорода — прогон, а основанием — акцептор протона, т. е. частица (молекула или ион), способная присоединять протон. Соотношение между кислотой и основанием определяется схемой:

Связанные этим соотношением основание и кислота называются сопряженными. Например, является основанием, сопряженным кислоте .

Реакцию между кислотой и основанием протонная теория представляет схемой:

Например, в реакции

ион — основание, сопряженное кислоте , а ион — кислота, сопряженная основанию .

Существенным в протонной теории является то положение, что вещество проявляет себя как кислота или как основание в зависимости от того, с каким другим веществом оно вступает в реакцию. Важнейшим фактором при этом является энергия связи вещества с протоном. Так, в ряду эта энергия максимальна для и минимальна для HF. Поэтому в смеси с вода функционирует как кислота, а в смеси с HF — как основание:

Дата добавления: 2015-04-24 ; Просмотров: 3003 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Свойства кислот оснований и солей с точки зрения ТЭД (теории электролитической диссоциации). Амфотерность.

Основания. Название «основание» первоначально было отнесено к веществам, которые в реакциях с кислотами образуют соли. К основаниям принадлежат гидроксиды многих металлов.

Примеры: NaOH — гидроксид натрия (едкий натр), KOH — гидроксид калия (едкое кали), Ca(OH)2 — гидроксид кальция (гашёная известь).

Основания, которые хорошо растворяются в воде, называются щелочами, К ним относятся гидроксиды щелочных и щелочно-земельных металлов. С точки зрения теории электролитической диссоциации основания-это вещества, диссоциирующие в водном растворе с образованием анионов одного вида — гидроксид — ионов ОН-.

В общем виде уравнение электролитической диссоциации основания имеет вид:

Основание -> Катион основания + Гидроксид — ион

NaOH Na + + OH —

Ba(OH)2Ba 2+ + 2OH —

NH3·H2O NH4 + + OH —

Кислоты. Кислоты исторически получили своё название из-за кислого вкуса водных растворов тактх веществ, как хлороводород или уксусная кислота. С точки зрения теории электролитической диссоциации кислоты-это вещества, диссоциирующие в водном растворе с образованием катионов одного вида — катионов водорода Н+.

В общем виде уравнение электролитической диссоциации кислоты имеет вид:

Кислота -> Катион водорода + Анион кислотного остатка

H2SO42H + + SO4 2-

CH3COOH H + = CH3COO —

Соли. С точки зрения теории электролитической реакции соли — это вещества, которые в водном растворе диссоциируют с образованием катионов основания и анионов кислотного остатка.

В общем виде уравнение электролитической диссоциации солей имеет следующий вид:

Соль -> Катион основания + Анион кислотного остатка

BaCl2Ba2+ + 2Cl —

K2CO3K + + CO3 2-

Амфотерность — способность некоторых химических веществ и соединений проявлять в зависимости от условий как кислотные, так и основные свойства.

Амфотерность как химическое свойство вещества может проявляться по-разному:

1. В рамках теории электролитической диссоциации это способность вещества к электролитической диссоциации как по механизму кислот (с отщеплением ионов гидроксония, H + ), так и по механизму оснований (отщепление гидроксид-ионов, OH – ). Электролиты, которые в растворе ионизируются одновременно по кислотному и основному типам называются амфолитами. Если обозначить амфотерный электролит формулой XOH, то его диссоциацию можно описать схемой:

H + + XO − ⇄ XOH ⇄ X + + OH −

Например, кислотно-основные свойства азотистой кислоты определяются равновесными процессами диссоциации с образованием нитрит-аниона и нитрозильного катиона:

HNO2 ⇄ NO + + OH − Kb ≈ 10 − 7

Идеальным амфолитом будет вода:

Также к числу идеальных амфолитов относят гидроксид галлия Ga(OH)3, вторые и третьи константы диссоциации которого по кислотному и основному типам практически одинаковы.

2. В рамках протолитической теории Брёнстеда-Лоури проявление амфотерности рассматривается как способность протолита выступать донором и акцептором протона. Например, для воды амфотерность проявляется как автопротоли:

Амфолитами также будут вещества, имеющие в своём составе функциональные группы, способные быть донорами и акцепторами протонов. Например, к амфотерным органическим электролитам относятся белки, пептиды и аминокислоты. Так аминокислоты имеют в своём составе, по крайней мере, карбоксильную группу –COOH и аминогруппу –NH2. В растворе эти группы подвергаются частичной ионизации:

H2N — CH(R) — COOH + H2O ⇄ [ H3N — CH(R) — COOH ] + + OH −

Таким образом, молекула аминокислоты находится в двух равновесных формах, заряженной (цвиттер-ион) и незаряженной. В этих комбинациях R–COOH и R–NH3 + являются потенциальными кислотами (донорами протонов, катионов), а R–COO– и R–NH2 – сопряженными потенциальными основаниями (акцепторами протонов, катионов).

3. Амфотерность может проявляться как способность вещества к взаимодействию как с кислотами, так и с основаниями. Это характерно для оксидов, гидроксидов и комплексных соединений некоторых p-элементов и большинства d-элементов в промежуточных степенях окисления. Амфотерность в той или иной степени является общим свойством гидроксидов. Например, для соединений хрома (III) известны реакции:

Не соответствуют действительности традиционные представления о проявлении амфотерности гидроксидов как диссоциации по кислотному и основному типам. В общем виде амфотерное поведение нерастворимых гидроксидов хрома (III), алюминия, цинка может описано как реакции ионного обмена ионов среды с лигандами H2O и OH – . Например, для Al(OH3) ионные равновесия могут быть записаны следующим образом:

4. В ряде случаев важным косвенным признаком амфотерности является способность элемента образовывать два ряда солей, катионного и анионного типа. Например, для цинка: ZnCl2, [Zn(H2O)4]SO4 (катионные) и Na2ZnO2, Na2(Zn(OH)4) (анионные).

Окислительно-восстановительные реакции. Понятие «степень окисления». Типы окислительно-восстановительных реакций (привести примеры).

Окислительно-восстановительные реакции, также редокс— это встречно-параллельные химические реакции, протекающие с изменением степеней окисления и не более 2-х атомов, входящих в состав реагирующих веществ (или ионов веществ), реализующимся путём перераспределения электронов между атомом-окислителем (акцептором) и атомом-восстановителем (донором).

В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то есть восстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений — окисления и восстановления, происходящих одновременно и без отрыва одного от другого.[2]

Окисление — процесс отдачи электронов с увеличением степени окисления.

При окислении вещества в результате отдачи электронов увеличивается его степени окисления. Атомы окисляемого вещества называются донорами электронов, а атомы окислителя — акцепторами электронов.

В некоторых случаях при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части (см. Свободные радикалы). При этом некоторые из атомов получившихся молекул имеют более высокую степень окисления, чем те же атомы в исходной молекуле.

Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель:

окислитель +e− ↔ сопряжённый восстановитель.

Восстановление — процесс присоединения электронов атомом вещества, при этом его степень окисления понижается.

При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидов металлов до свободных металлов при помощи водорода, углерода, других веществ; восстановление органических кислот в альдегиды и спирты; гидрогенизация жиров и др.

Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель:

восстановитель -e− ↔ сопряжённый окислитель.

Несвязанный, свободный электрон является сильнейшим восстановителем.

Окислитель и его восстановленная форма, либо восстановитель и его окисленная форма составляет сопряжённую окислительно-восстановительную пару, а их взаимопревращения являются окислительно-восстановительными полуреакциями.

Читайте также:  Карл поппер кто такой и точка зрения

В любой окислительно-восстановительной реакции принимают участие две сопряжённые окислительно-восстановительные пары, между которыми имеет место конкуренция за электроны, в результате чего протекают две полуреакции: одна связана с присоединением электронов, то есть восстановлением, другая — с отдачей электронов, то есть окислением.

Степень окисления (окислительное число, формальный заряд) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций. Она указывает на состояние окисления отдельного атома молекулы и представляет собой лишь удобный метод учёта переноса электронов: она не является истинным зарядом атома в молекуле.

Представления о степени окисления элементов положены в основу и используются при классификации химических веществ, описании их свойств, составлении формул соединений и их международных названий (номенклатуры). Но особенно широко оно применяется при изучении окислительно-восстановительных реакций.

Понятие степень окисления часто используют в неорганической химии вместо понятия валентность.

Последнее изменение этой страницы: 2017-02-05; Нарушение авторского права страницы

18.Характеристики кислот, оснований и солей с точки зрения теории электролитической диссоциации. Амфотерность гидроксидов.

Диссоциация оснований. Согласно теории электролитической диссоциации, основания – это электролиты, которые при диссоциации образуют только один вид анионов – гидроксид-ионы OH  : NaOH  Na + + OH  ; Ca(OH)2  CaOH + + OH  ; CaOH +  Ca 2+ + OH  .

Ступенчатость диссоциации обусловливает возможность образования основных и кислых (см. ниже) солей.

Диссоциация кислот. Кислоты – это электролиты, которые при диссоциации образуют только один вид катионов – катионы водорода H + . HCl  H + + Cl  ; HNO3  H + + NO3  ; H2SO4  H + + HSO4  — ; HSO4   H + + SO4 2  ; H3PO4  H + + H2PO4  ; H2PO4   H + + HPO4 2  ; HPO4 2   H + + PO4 3  .

Диссоциация амфотерных гидроксидов. Амфотерные гидроксиды дис-социируют в водном растворе как по типу кислоты, так и по типу основания. При их диссоциации одновременно образуются катионы H + и гидроксид-анионы OH  : H + + MeO  ⇄ MeOH ⇄ Me + + OH  .

К ним относятся гидроксиды цинка Zn(OH)2, алюминия Al(OH)3, хрома Cr(OH)3, свинца Pb(OH)2 и др.

1. Средние соли – это электролиты, при диссоциации которых в водных растворах образуются катионы металла и анионы кислотного остатка. Напри-мер, Na2SO42 Na + + SO4 2  ; Ca3(PO)43 Ca 2+ + 2 PO4 3  .

2.Кислые соли при растворении в воде образуют катион металла и сложный анион из атомов водорода и кислотного остатка: KHSO3  K + + HSO3  ( = 1).

Сложный анион диссоциирует частично: HSO3  ⇄ H + + SO3 2  (  : Al(OH)2Cl  Al(OH)2 + + Cl  ( = 1).

Сложный катион диссоциирует частично: Al(OH)2 + ⇄ AlOH 2+ + OH  ( 2+ ⇄ Al 3+ + OH  ( + + Al 3+ + 2 SO4 2  ;

Сложные соли диссоциируют на катион металла и анионы кислотных остатков. Например, ZnClNO3  Zn 2+ + Cl  + NO3  ;

19. Окислительно-восстановительные реакции (овр). Степень окисления атомов Основные окислители и восстановители. Составление уравнений овр методами электронного и электронно-ионного баланса.

ОВР-реакции, протекающие с изменением степени окисления.

Окисление – это процесс отдачи электронов при этом происходит понижение степени окисления.

Восстановление – это процесс присоединения электронов, при этом происходит понижение степени окисления.

Реакции, в кот. ок-ль. и восст-ль предс. собой различные ве-ва наз. межмолеклярными. Если ок-ль и восс-ль атомы одной молекулы — внутримолекулярные.

Под степенью окисления (окислительным числом) понимают условный заряд атома в соединении, вычисленный из предположения, что в молекуле все связи ионные. Степень окисления указывает, сколько электронов оттянуто от атома (положительная степень окисления) или притянуто к нему от другого атома (отрицательная степень окисления). Мера удаления или приближения электронов к атому в степени окисления не отражена.Восстановители

а) Металлы как простые вещества: K 0 , Na 0 , Ca 0 , Al 0 и др.

б) Простые анионы неметаллов: S 2  , Cl  , J  , Br  , Se 2  и др.

в) Сложные анионы и молекулы, содержащие электроположитель-ные элементы в промежуточной степени окисления: S +4 O3 2  , N +3 O2  , As +3 O3 3  , Cr +3 O2  , [Fe +2 (CN)6] 4  , C +2 O, N +2 O, S +4 O2 и др.

г) Простые катионы в низшей степени окисления: Fe 2+ , Sn 2+ , Cr 3+ , Cu + , Mn 2+ , As 3+ и др.

д) Некоторые простые вещества:

е) Катод при электролизе.

а) Неметаллы как простые вещества с большой электроотрицательностью: F2, O2, Cl2 и др.

б) Простые катионы в высокой степени окисления: Sn 4+ , Fe 3+ , Cu 2+ и др., а также H + .

г) Сложные ионы и молекулы, содержащие атомы неметаллов в положительной степени окисления: H2S +6 O4, S +6 O3, HOCl +1 , HCl +5 O3,

д) Анод при электролизе.

В соединениях, когда атомы находятся в промежуточной степени окисления, последние могут проявлять как восстановительные, так и окислительные свойства (окислительно-восстановительная двойствен-ность):

Применяют два метода составления уравнений реакций окисления-восстановления:

Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации

Для кислот характерны следующие общие свойства:

а) способность взаимодействовать с основаниями с образованием солей;

б) способность изменять цвета индикаторов, в частности, вызывать красную окраску лакмуса;

При диссоциации любой кислоты образуются ионы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, мы должны объяснить присутствием гидратированных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т.д. С устранением ионов водорода, например, при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода.

Одноосновные кислоты диссоциируют в одну ступень:

HNO3H + + N .

Многоосновные кислоты диссоциируют ступенчато:

;

;

При составлении уравнений диссоциации следует помнить, что суммы зарядов в левой и правой частях уравнения должны быть одинаковыми.

Для водных растворов оснований характерны следующие общие свойства:

А) Способность взаимодействовать с кислотами с образованием солей;

б) способность изменять цвет индикаторов иначе, чем их изменяют кислоты (например, они вызывают синюю окраску лакмуса);

в) своеобразный «мыльный» вкус

Поскольку общими для всех растворов оснований является присутствие в них гидроксид-ионов, то ясно, что носителем основных свойств является гидроксид-ион. Поэтому с точки зрения теории электролитической диссоциации основания – это электролиты, диссоциирующие в растворах с отщеплением гидроксид-ионов.

Однокислотные основания диссоциируют в одну ступень:

.

Многокислотные основания диссоциируют ступенчато:

,

.

Существуют гидроксиды, способные вступать во взаимодействие и образовывать соли не только с кислотами, но и с основаниями. К таким гидроксидам принадлежит гидроксид цинка. При взаимодействии его, например, с соляной кислотой получается хлорид цинка

,

А при взаимодействии с гидроксидом натрия при недостатке воды – цинкат натрия:

.

Гидроксиды, обладающие этим свойством, называются амфотерными гидроксидами или амфотерными амфолитами – амфолитами. К таким гидроксидам кроме гидроксида цинка относятся гидроксиды алюминия, хрома(III),железа(III), меди(II), олова(IV) и другие.

Явление амфотерности объясняется тем, что в молекулах амфотерных электролитов прочность связи между металлом и кислородом незначительно отличается от прочности связи между кислородом и водородом. Диссоциация таких молекул, возможна, следовательно, по местам обеих связей. Например, диссоциацию гидроксида цинка можно выразить схемой:

Таким образом, в растворе амфотерного электролита существует сложное равновесие, в котором участвуют продукты диссоциации как по типу кислоты, так и по типу основания.

Таких ионов, которые были бы общими для водных растворов всех солей, нет, поэтому соли и не обладают общими свойствами.

С точки зрения ТЭД соли – это электролиты, которые при растворении в воде диссоциируют на катионы металла и анионы кислотного остатка.

Средние соли диссоциируют в одну ступень


Кислые соли диссоциируют ступенчато: сначала отщепляются все катионы металла, а затем – по одному – ионы водорода.

Основные соли диссоциируют ступенчато: сначала отщепляются все ионы кислотных остатков, а затем – по одному – гидроксид-ионы.

,

,

.

Таким образом, при составлении уравнений диссоциации следует помнить: катионы водорода и гидроксид-ионы диссоциируют ступенчато, а катионы металлов и анионы кислотных остатков – сразу, в одну ступень.

| следующая страница ==>
Сильные электролиты. Активность электролитов | Реакции ионного обмена

Дата добавления: 2014-05-03 ; просмотров: 2 .

Теория электрической диссоциации

Электролитическая диссоциация — процесс распада электролита на ионы при его растворении или плавлении.

Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблукови В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс .

Вещества, распадающиеся на ионы, называют электролитами. Электролиты – вещества с ионной или сильно ковалентной связью: кислоты, основания, соли. остальные вещества – неэлектролиты; к ним относятся вещества с неполярной или слабо полярной ковалентной связью; например, многие органические соединения.

Основные положения ТЭД (Теории электролитической диссоциации):

Молекулы распадаются на положительно и отрицательно заряженные ионы (простые и сложные).

Под действием электрического тока катионы (положительно заряженные ионы движутся к катоду(-), а анионы (отрицательно заряженные ионы) к аноду(+)

Степень диссоциации зависит от природы вещества и растворителя, концентрации, температуры.

Если степень диссоциации зависит от природы вещества, то можно судить, что существует разграничение между определёнными группами веществ.

Большая степень диссоциации присуща сильным электролитам (большинству оснований, солям, многим кислотам). Стоит учесть, что распад на ионы – обратимая реакция. Так же стоит сказать, что в данной теме не будут разобраны примеры диссоциации двойных и основных солей, их диссоциация описана в теме “соли”.
Примеры сильных электролитов:
NaOH, K2SO4, HClO4
Уравнения диссоциации:
NaOH⇄Na + +OH —

Количественной характеристикой силы электролитов является степень диссоциации (α) – отношение молярной концентрации продиссоциировавшего электролита к его общей молярной концентрации в растворе.

Читайте также:  От чего горят уши с медицинской точки зрения

Степень диссоциации выражается в долях единицы или в процентах. Интервал значений – от 0 до 100%.

α = 0% относится к неэлектролитам (диссоциация отсутствует)

У каждой ступени диссоциации своя степень диссоциации.
Например, диссоциация солей CuCl2, HgCl2:
CuCl2⇄Cu 2+ +2Cl — диссоциация протекает полностью

А в случае с хлоридом ртути диссоциация идёт неполностью и то не до конца.

Возвращаясь же к раствору серной кислоты, стоит сказать, что степень диссоциации обеих ступеней разбавленной кислоты гораздо больше, чем у концентрированной. При диссоциации концентрированного раствора очень много молекул вещества и большая концентрация гидроанионов HSO4 — .

У многоосновных кислот и многокислотных оснований диссоциация идёт в несколько ступеней (в зависимости от основности).

Перечислим сильные и слабые кислоты и приступим к уравнениям ионного обмена:
Сильные кислоты ( HCl, HBr, HI, HClO3, HBrO3, HIO3, HClO4, H2SO4, H2SeO4,HNO3, HMnO4, H2Cr2O7)

Химические реакции в растворах и расплавах электролитов протекают с участием ионов. В таких реакциях степени окисления элементов не изменяются, и сами реакции называются реакциями ионного обмена.

Реакции ионного обмена будут протекать до конца (необратимо) , если образуются малорастворимые или практически нерастворимые вещества (они выпадают в осадок), летучие вещества (выделяются в виде газов) или слабые электролиты (например, вода).

Реакции ионного обмена принято писать в три стадии:
1. Молекулярное уравнение
2. Полное ионное уравнение
3. Сокращенное ионное уравнение
При написании обязательно указывать осадки и газы, а так же руководствоваться таблицей растворимости.

Реакции, где все реагенты и продукты получились растворимые в воде, не протекают.

Сокращённое ионное уравнение получается с помощью вычёркивания одинаковых ионов из обеих частей полного ионного уравнения.

Если реакция ионного обмена идёт между двумя солями с образованием осадка, то следует брать два хорошо растворимых реагента. То есть, реакция ионного обмена пойдёт если растворимость реагентов будет выше, чем у одного из продуктов.

Иногда при написании реакций ионного обмена пропускают полное ионное уравнение и сразу пишут сокращенное.

Для получения осадка малорастворимого вещества всегда надо выбирать хорошо растворимые реагенты в их концентрированных растворах.
Например:
2KF+FeCl2→FeF2↓+2KCl

Данные правила подбора реагентов для осаждения продуктов справедливы только для солей.

Кислоты, основания, соли с точки зрения ТЭД.

Кислоты— это электролиты, распвдающиеся в водных растворах с образованием гидратированных ионов Н + .

HCl —→ H 2 O H + +Cl —

HCN↔ H 2 O H + +CN —

Основания-это электролиты, расп-ся в водных растворах с образ-м гидротиров-х гидроксид- ионов.

PbOH↔ +H2O Pb 2+ +OH —

Соли-это электролиты,расп-ся на катионы Мет.(илиNH4 + ) и анионы кислотных остатков.Соли: средние K2SO3→ H 2 O 2K + +SO3 2- двойные: KAl(SO4)2→ H 2 O K + +Al 3+ +2SO4 2-

кислые(гидросоли) NaHCO3→ H 2 O Na + +HCO3

основные(гидроксосоли) Al(OH)2Cl→ H 2 O [Al(OH)2] + +Cl —

Кислотный, основный и амфотерный тип ионизации гидроксидов.

Тип ионизации опред-ся полярностью и поляризуемостью хим.связей. Кислотно-основные св-ва гидроксидов опр-ся природой центрального атома,т.е.его Мет.или неМет.св-ми,гидроксид будет вести себя как основание, если преобладают Мет.св-ва центр.атома; гидроксид будет вести себя как кислота, если преобладают неМет.св-ва центр.атома. Сила кислородсодержащих кислот зависит от строения молекул. (НО)nЭОm . Как установлено экпериментально сила к-т практически не зависит от n, но возрастает с увеличением m. Резкое возрастание силы в ряду кислот с увеличением m можно объяснить оттягиванием электронной плотности от связи Н-О, на связь Э=О.

(НО)nЭ-очень слабая кислота

(НО)n ЭО- слабая кислота

(НО)nЭО2— сильная кислота

(НО)nЭО3— очень сильная кислота

С увелич-м степени окисления центр.атома увелич-ся m, а значит и возрастает сила кислот.

осн. слаб.осн. амф. к-та очень

Протонная теория кислот и оснований:или теория Бренстеда и Лоури.

Определение к-т и оснований с точки зрения ТЭД ограниченно только водными р-ми и только гидроксидсодержащими основаниями.Но ряд осн-й(NH3) не подходят под определение основания с точки зрения ТЭД.

Согласно этой теории, кислоты-это в-ва,отщепляющие при данной р-ции протоны,т.е.являющиеся донорами протонов. Основания- это в-ва , способные принимать протоны,т.е.явл-ся акцепторами протонов. Р-цию между кислотой и основанием, согласно теории, можно записать в виде протолитического равновесия.

к-та осн-е осн-е к-та к-та осн-е осн-е к-та

к-та осн-е осн-е к-та

Еще более общее опред-е кислот и оснований было дано Льюисом, основанное на участии электронных пар.

Кислота Льюиса – это катионы, анионы или нейтральные молекулы, способные принять одну или несколько электронных пар, или это акцептор электр-х пар.

Основание Льюиса— это катионы, анионы или нейтральные молекулы,способные отдаватьэлектронные пары, или это доноры электр-х пар.

32. Полисахариды. Высокомолекулярные несахароподобные углеводы, содержащие от 10 до сотен тысяч остатков моносахаридов, связанных гликозидными связями. Важнейшие представители: крахмал, целлюлоза, гликоген. Это природные полимеры (ВМС), мономером которых является глюкоза. Их общая формула 6Н10О5)nЗначение nцел >>nкр и достигает в некоторых видах до 40 тысяч, а молекулярная масса доходит до нескольких миллионов.

Крахмал. Аморфный порошок белокго цвета, без вкуса и запаха, плохо растворим в воде, в горячей воде образует коллоидный раствор. Макромолекулы крахмала построены из большого числа остатков α-глюкозы. Крахмал состоит из двух фракций: амилозы и амилопектина. Соотношение между ними в крахмалах разных растений различно. В среднем содержание амилозы – 20-30%, амилопектина – 70-80%..

Гликоген – это эквивалент крахмала, синтезируемый в животных орагнизмах,т.е.это тоже резервный полисахарид, молекулы которого построены из большого числа остатков α-глюкозы. Содержится гликоген главным образом в печени и мышцах. По своему строению он очень близок амилопектину.

Гликоген – белый аморфный порошок, хорошо растворимый даже в холодной воде, легко гидролизуется под действием кислот и ферментов, образуя в качестве промежуточных веществ декстрины, мальтозу и при полном гидролизе – глюкозу.

Молекулы целлюлозы имеют линейное (неразветвленное) строение, вследствие чего целлюлоза образует волокна.

Макромолекулы целлюлозы построены из остатков β-глюкозы. В этом заключается главное отличие целлюлозы от крахмала.

Следует особо отметить, что в молекуле целлюлозы каждое второе кольцо остатка глюкозы повернуто на 180° относительно первого. Это обеспечивает плотную упаковку макромолекул целлюлозы. Вы видите, что каждый остаток глюкозы содержит три гидроксильные группы. Поэтому между цепями макромолекул могут образовываться межмолекулярные водородные связи. Это увеличивает механическую прочность целлюлозы. Поэтому целлюлоза образует каркас растительной клетки.

Чистая целлюлоза – белое твердое вещество, нерастворимое в воде и обычных органических растворителях, но хорошо растворимое в аммиачном растворе гидроксида меди (II) – реактив Швейцера. Из этого раствора кислоты осаждают целлюлозу в виде волокон (гидрат целлюлозы).

Небольшие различия в строении молекул крахмала и целлюлозы обуславливают значительные различия в свойствах полимеров: целлюлоза не дает реакции серебряного зеркала (нет альдегидной группы), но с кислотами вступает в реакции этерификации. Это дает основание рассматривать каждое звено С6Н10О5 как остаток глюкозы, содержащий три гидроксильные группы:

или [C6H7O2(OH)3]

За счет них целлюлоза может образовывать простые и сложные эфиры.

При взаимодействии целлюлозы с концентрированной азотной кислотой в присутствии концентрированной серной в качестве водоотнимающего средства образуется сложный эфир – тринитрат целлюлозы

При обычной температуре целлюлоза взаимодействует только с концентрированными кислотами.

Подобно крахмалу, целлюлоза при нагревании с разбавленными кислотами подвергается гидролизу:

Гидролиз целлюлозы, иначе называется осахариванием, — очень важное свойство целлюлозы, он позволяет получить из древесных опилок и стружек глюкозу, а сбраживанием последних – этиловый спирт. Такой спирт называют гидролизным. На гидролизных заводах из 1 тонны древесины получают до 200 литров спирта.

Для целлюлозы характерно горение:

Без доступа воздуха – термическое разложение целлюлозы приводит к образованию СН3ОН, СН3СООН, (СН3)2СО и др.

Сырая глюкоза, полученная из древесины, может служить кормом для скота.

Гидролизный спирт (см. выше)

Целлюлоза в виде хлопка, льна и пеньки идет на изготовление тканей – хлопчатобумажных и льняных.

Большое количество расходуется на производство бумаги. Дешевые сорта изготавливают из древесины хвойных пород, лучшие – из льняного и хлопчатобумажного тряпья.

Подвергая целлюлозу химической обработке, получают несколько видов искусственного шелка, пластмассы, кинопленку, бездымный порох (тринитроцеллюлоза), лаки и многое другое.

Принципы обучения химии.

Содержание курса химии опр-ся общими целями обучения, содержанием самой хим. науки, значением и местом данного учебного предмета в общей с-ме образования. Химия явл-ся предметом естеств-научн. цикла, её основная задача – форм-е научного мировоззрения. Принципы обучения – это основные дидактические положения как ко всей с-ме обучения, так и по отдельным учебным дисциплинам. Дидактические принципы определяют требования к содержанию, методам, средствам, орг. формам учебной работы в соотв. с общими целями и закон-стями процесса обучения. Выделют след. дидак. Принципы: научности и посильной трудности, сознательности и творч. актив-сти уч-ся при руководящей роли у-ля, наглядности обучения и развития теор. мышления, систематичности и прочности знаний, связи обучения с реальной жизнью, фор-ние положит. эмоций у уч-ся к обучению, коллективного хар-ра обучения и учета индивид. особ-стей уч-ся.

Выдел-ют след. принципы обучения химии: 1) принцип соответствия учебного мат-ла уровню современной науки. Этот принцип реализуется через: приближение содержания курса к уровню современ. науки; путем повышения системности курса; путем определения ведущей роли теории в курсе; путем определ-я оптим. соотнош-ния фактов и теории; 2) Принцип развития понятий. Совр. курс химии в школе построен с учетом принципов концентризма (по спиралеобр. х-ру). Любое хим. понятие проходит свое форм-е и развитие на разных уровнях теории строения в-ва; 3) Принцип разделения трудностей теории школьного курса, понятия изучаются на разных возр. уровнях. 4) Принцип историзма. Всё изучаемое в курсе химии должно рассматр-ся с точки зр. истор. событий. Стр-ра школьного курса опр-ся: четким выделением осн. теор. знаний, дидактич. обоснованной последоват-стью учебного мат-ла, оптимальностью содержания учебн. мат-ла для сознательного и системного усвоения умений и знаний.

Источники:
  • http://studopedia.su/15_96479_svoystva-kislot-osnovaniy-i-soley-s-tochki-zreniya-teorii-elektroliticheskoy-dissotsiatsii.html
  • http://infopedia.su/17x4d38.html
  • http://studfiles.net/preview/2180772/page:8/
  • http://refac.ru/svojstva-kislot-osnovanij-i-solej-s-tochki-zreniya-teorii-elektroliticheskoj-dissociacii/
  • http://www.teslalab.ru/articles/chemistry/35/
  • http://cyberpedia.su/17x6cd5.html