Меню Рубрики

Дайте определение оснований с точки зрения теории

Диссоциация оснований. Согласно теории электролитической диссоциации, основания – это электролиты, которые при диссоциации образуют только один вид анионов – гидроксид-ионы OH  : NaOH  Na + + OH  ; Ca(OH)2  CaOH + + OH  ; CaOH +  Ca 2+ + OH  .

Ступенчатость диссоциации обусловливает возможность образования основных и кислых (см. ниже) солей.

Диссоциация кислот. Кислоты – это электролиты, которые при диссоциации образуют только один вид катионов – катионы водорода H + . HCl  H + + Cl  ; HNO3  H + + NO3  ; H2SO4  H + + HSO4  — ; HSO4   H + + SO4 2  ; H3PO4  H + + H2PO4  ; H2PO4   H + + HPO4 2  ; HPO4 2   H + + PO4 3  .

Диссоциация амфотерных гидроксидов. Амфотерные гидроксиды дис-социируют в водном растворе как по типу кислоты, так и по типу основания. При их диссоциации одновременно образуются катионы H + и гидроксид-анионы OH  : H + + MeO  ⇄ MeOH ⇄ Me + + OH  .

К ним относятся гидроксиды цинка Zn(OH)2, алюминия Al(OH)3, хрома Cr(OH)3, свинца Pb(OH)2 и др.

1. Средние соли – это электролиты, при диссоциации которых в водных растворах образуются катионы металла и анионы кислотного остатка. Напри-мер, Na2SO42 Na + + SO4 2  ; Ca3(PO)43 Ca 2+ + 2 PO4 3  .

2.Кислые соли при растворении в воде образуют катион металла и сложный анион из атомов водорода и кислотного остатка: KHSO3  K + + HSO3  ( = 1).

Сложный анион диссоциирует частично: HSO3  ⇄ H + + SO3 2  (  : Al(OH)2Cl  Al(OH)2 + + Cl  ( = 1).

Сложный катион диссоциирует частично: Al(OH)2 + ⇄ AlOH 2+ + OH  ( 2+ ⇄ Al 3+ + OH  ( + + Al 3+ + 2 SO4 2  ;

Сложные соли диссоциируют на катион металла и анионы кислотных остатков. Например, ZnClNO3  Zn 2+ + Cl  + NO3  ;

ОВР-реакции, протекающие с изменением степени окисления.

Окисление – это процесс отдачи электронов при этом происходит понижение степени окисления.

Восстановление – это процесс присоединения электронов, при этом происходит понижение степени окисления.

Реакции, в кот. ок-ль. и восст-ль предс. собой различные ве-ва наз. межмолеклярными. Если ок-ль и восс-ль атомы одной молекулы — внутримолекулярные.

Под степенью окисления (окислительным числом) понимают условный заряд атома в соединении, вычисленный из предположения, что в молекуле все связи ионные. Степень окисления указывает, сколько электронов оттянуто от атома (положительная степень окисления) или притянуто к нему от другого атома (отрицательная степень окисления). Мера удаления или приближения электронов к атому в степени окисления не отражена.Восстановители

а) Металлы как простые вещества: K 0 , Na 0 , Ca 0 , Al 0 и др.

б) Простые анионы неметаллов: S 2  , Cl  , J  , Br  , Se 2  и др.

в) Сложные анионы и молекулы, содержащие электроположитель-ные элементы в промежуточной степени окисления: S +4 O3 2  , N +3 O2  , As +3 O3 3  , Cr +3 O2  , [Fe +2 (CN)6] 4  , C +2 O, N +2 O, S +4 O2 и др.

г) Простые катионы в низшей степени окисления: Fe 2+ , Sn 2+ , Cr 3+ , Cu + , Mn 2+ , As 3+ и др.

д) Некоторые простые вещества:

е) Катод при электролизе.

а) Неметаллы как простые вещества с большой электроотрицательностью: F2, O2, Cl2 и др.

б) Простые катионы в высокой степени окисления: Sn 4+ , Fe 3+ , Cu 2+ и др., а также H + .

г) Сложные ионы и молекулы, содержащие атомы неметаллов в положительной степени окисления: H2S +6 O4, S +6 O3, HOCl +1 , HCl +5 O3,

д) Анод при электролизе.

В соединениях, когда атомы находятся в промежуточной степени окисления, последние могут проявлять как восстановительные, так и окислительные свойства (окислительно-восстановительная двойствен-ность):

Применяют два метода составления уравнений реакций окисления-восстановления:

Теория кислот и оснований

В настоящее время не существует однозначного определения понятий кислоты и основания, которое в равной степени можно было бы использовать для характеристики кислотно-основных взаимодействий в любых растворителях. Для характеристики электролитов в водных растворах в настоящее время можно использовать понятия кислоты и основания, данные Аррениусом.

Согласно теории Аррениуса кислотой считается соединение, при электролитической диссоциации которого образуются катионы водорода, а основанием считается соединение, в результате диссоциации которого образуется гидроксид-ион. Амфолитом (амфотерным гидроксидом) называют электролит, диссоциирующий в растворе с образованием как катионов водорода, так и гидроксид – ионов. К амфолитам относят гидроксиды цинка, алюминия, хрома и других аммфотерных элементов, а так же аминокислоты, белки, нуклеиновые кислоты.

Таким образом, свойства кислот обусловлены наличием в их растворах водород — ионов, а свойства оснований — присутствием в их растворах гидроксид — ионов. Однако такой взгляд на кислоты и основания применим только для водных растворов.

Ограниченность понятий кислоты и основания, данных Аррениусом, можно проиллюстрировать примерами:

1. Молекула NH3 + не содержит иона ОН — , а молекула СО2 — иона H + , однако в водном растворе первая проявляет свойства основания, а вторая — кислоты.

2. Безводный хлорид водорода, состоящий только из молекул, реагирует с безводными основаниями.

3. Многие электролиты, содержащие водород, в одном растворителе диссоциируют как кислоты, а в другом – как основания. Например, СН3СООН в воде – слабая кислота:

а в жидком фториде водорода — основание:

Исследования подобного типа реакций, и в особенности реакций, протекающих в неводных растворителях, привело к созданию более общих теорий кислот и оснований.

Протонная теория кислот и оснований.

В 1923 г. И. Бренстед и Т. Лоури разработали протонную теорию кислот и оснований.

Согласно этой теории:

— кислотой называют любое вещество, молекулярные частицы которого (в том числе ионы) способны отдавать протон, т.е. быть донором протонов;

— основанием называют вещество, молекулярные частицы которого (в том числе и ионы) способны присоединять протоны, т.е. быть акцептором протонов.

Такие определения кислот и оснований позволяют включать в их число не только молекулы, но и ионы. Например, карбонат-ион согласно протонной теории является основанием, т.к. в водном растворе он присоединяет протон:

Согласно протонной теории кислоты подразделяют на три типа:

1. Нейтральные кислоты, например HCl, H2SO4, H3PO4 и др.

2. Катионные кислоты, представляющие собой положительные ионы, например NH4 + , Н3О + :

3. Анионные кислоты, представляющие собой отрицательные ионы, например, HSO4 — , H2PO4 — , HPO4 2- и др.:

Подобного типа классификация имеется и для оснований:

1. Нейтральные основания, например, NH32О, С2Н5ОН и др.:

2. Анионные основания, представляющие собой отрицательные ионы, например, Cl — , СН3СОО — , ОН — :

3. Катионные основания, представляющие собой положительные ионы, например, Н2N−NH3 + .

Растворители типа воды, жидкого аммиака, а так же анионы многоосновных кислот, которые могут быть и донорам и акцепторами протонов, являются амфолитами.

Например, в реакции Н2О + NH3 → ОН — + NH4 + молекула воды отдает протон и является кислотой.

Однако в реакции Н2О+ HCl→ Н3О + +Сl — молекула воды присоединят протон и является основанием. Таким образом, вода — типичный амфолит.

Процесс диссоциации (ионизации) вещества происходит в контакте с растворителем. При этом растворитель выполняет или функцию кислоты или основания. Например, при растворении аммиака вода – кислота NH3+ Н2О NH4 + + ОН — При растворении фторида водорода – основание HF+ Н2О F — +H3O +

Если сродство к протону у растворителя больше, чем у растворенного вещества, то растворитель выступает как основание (сродство к протону Н2О больше сродства к протону HF), а если оно меньше – как кислота (сродство к протону Н2О меньше сродства к протону NH3).

Согласно протонной теории, отдавая протон, кислота превращается в основание, которое называют сопряженным этой кислоте:

I. (кислота)1 = (сопряженное основание)1 + Н + т.е. каждой кислоте соответствует сопряженное основание.

Наоборот, основание, присоединяя протон, превращается в сопряженную кислоту:

II. (основание)2 + Н + = (сопряженная кислота)2

Например, кислоте H2SO4 соответствует сопряженное основание HSO4, а основанию Cl — — сопряженная кислота НСl.

Для краткости обратимый процесс кислотно-основного взаимодействия называют кислотно-основным равновесием.

Например:

Несмотря на свои достоинства теория Бренстеда, как и теория Аррениуса, не применима к веществам, проявляющим функцию кислоты веществ, не содержащих водорода, например галогенидам бора, алюминия, кремния и олова. Поэтому более общей является теория кислот и оснований Льюиса.

Читайте также:  В мазке лейкоциты в поле зрения

Теория Льюиса (электронная теория).

В теории Льюиса за основу взято наиболее общее свойство кислот и оснований – их электронное строение.

Согласно этой теории:

— кислотой называют вещество, принимающее неподеленную электронную пару, — акцептор электронов;

— основанием называют вещество, поставляющее электроны для образования химической связи, — донор электронов.

По Льюису отличительной способностью кислот и оснований является их взаимная нейтрализация путем образования ковалентной связи:

В приведенных примерах в качестве кислоты выступают молекулы трихлорида брома и оксида серы (VI), а в качестве оснований – молекулы аммиака и воды.

Таким образом, теория Льюиса рассматривает разные химические процессы как однотипные: реакцию аминов с галогенидом бора, комплексообразование.

К основаниям Льюиса относят галогенид — ионы, аммиак, алифатические и ароматические амины, кислородсодержащие соединения общей формулы R2CO (где R — органический радикал).

К кислотам Льюиса относят галогениды бора, алюминия, кремния, олова и других элементов.

Рассмотренные теории кислот и оснований не противоречат, а дополняют друг друга и имеют глубокую внутреннюю связь. Так, кислоты, по Бренстеду, можно рассматривать как частный случай льюисовских кислот, поскольку протон характеризуется большим сродством к электронной паре и может рассматриваться, по Люйсу, как кислота.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 9491 — | 6697 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации

Читайте также:

  1. I. 36. Состав, свойства и применение азотных удобрений.
  2. I. Первая группа теорий – детерминистские теории.
  3. IV. система педагогических исследований с методологической точки зрения
  4. PGP. Принцип функционирования. Свойства ключа.
  5. V2: 01.01. Предмет и метод экономической теории
  6. VIII . Механические свойства металлов. Диаграмма растяжения металлов.
  7. XV. Влияние углерода и постоянных примесей на свойства стали
  8. Абсолютные величины и их виды, познавательные свойства и условия применения в экономико-статистическом анализе.
  9. Автономные системы и свойства их решений.
  10. Азотирование и нитроцементация. Структура, свойства и области получения.
  11. Аксиомы теории вероятностей.
  12. Актуальность проблематики с точки зрения изменения роли ИТ в бизнесе и обществе

Кислоты основания соли с точки зрения электролитической диссоциации

Рассмотрим в свете теории электролитической диссоциации свойства веществ, которые в водных растворах проявляют свойства электролитов.

Кислоты. Для кислот характерны следующие общие свойства:

а) способность взаимодействовать с основаниями с образованием солей;

б) способность взаимодействовать с некоторыми металлами с выделением водорода;

в) способность изменять цвета индикаторов, в частности, вызывать красную окраску лакмуса;

При диссоциации любой кислоты образуются иокы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, мы должны объяснить присутствием гидратированных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т. д. С устранением ионов водорода, например при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода.

У сильных кислот, диссоциирующих нацело, свойства кислот проявляются в большей степени, у слабых — в меньшей. Чем лучше кислота диссоциирует, т. е. чем больше ее константа диссоциации, тем она сильнее.

Сравнивая данные, приведенные в табл. 12 и 14, можно заметить, что величины констант диссоциации кислот изменяются в очень широких пределах. В частности, константа диссоциации циановодорода много меньше, чем уксусной кислоты. И хотя обе эти кислоты — слабые, все же уксусная кислота значительно сильнее циановодорода. Величины первой и второй констант диссоциации серной кислоты показывают, что в отношении первой ступени диссоциации — сильная кислота, а в отношении второй — слабая. Кислоты, константы диссоциации которых лежат в интервале , иногда называют кислотами средней силы. К ним, в частности, относятся ортофосфорная и сернистая кислоты (в отношении диссоциации по первой ступени).

Основания. Водные растворы оснований обладают следующими общими свойствами:

а) способностью взаимодействовать с кислотами с образованием солей;

б) способностью изменять цвета индикаторов иначе, чем их изменяют кислоты (например, они вызывают синюю окраску лакмуса);

в) своеобразным «мыльным» вкусом.

Поскольку общим для всех растворов оснований является присутствие в них гидроксид-ионов, то ясно, что носителем основных свойств является гидроксид-ион. Поэтому с точки зрения теории электролитической диссоциации основания — это электролиты, диссоциирующие в растворах с отщеплением гидроксид-ионов.

Сила оснований, как и сила кислот, зависит от величины константы диссоциации. Чем больше константа диссоциации данного основания, тем оно сильнее.

Существуют гидроксиды, способные вступать во взаимодействие и образовывать соли не только с кислотами, но и с основаниями. К таким гидроксидам принадлежит гидроксид цинка. При взаимодействии его, например, с соляной кислотой получается хлорид цинка

а при взаимодействии с гидроксидом натрия — цинкат натрия;

Гидроксиды, обладающие этим свойством, называются амфотерными гидроксидами, или амфотерными электролитами. К таким гидроксидам кроме гидроксида цинка относятся гидроксиды алюминия, хрома и некоторые другие.

Явление амфотерности объясняется тем, что в молекулах амфотерных электролитов прочность связи между металлом и кислородом незначительно отличается от прочности связи между кислородом и водородом. Диссоциация таких молекул возможна, следовательно, по местам обеих этих связей. Если обозначить амфо-терный электролит формулой ROH, то его диссоциацию можно выразить схемой:

Таким образом, в растворе амфотериого электролита существует сложное равновесие, в котором участвуют продукты диссоциации как по типу кислоты, так и по типу основания.

Явление амфотерности наблюдается также среди некоторых органических соединений. Важную роль оно играет в биологической химии; например, белки — амфотерные электролиты.

Соли. Соли можно определить как электролиты, которые при растворении в воде диссоциируют, отщепляя положительные ионы, отличные от ионов водорода, и отрицательные ионы, отличные от гидроксид-ионов. Таких ионов, которые были бы общими для водных растворов всех солей, нет; поэтому соли и не обладают общими свойствами. Как правило, соли хорошо диссоциируют, и тем лучше, чем меньше заряды ионоз, образующих соль.

При растворении кислых солей в растворе образуются катионы металла, сложные анионы кислотного остатка, а также ионы, являющиеся продуктами диссоциации этого сложного кислотного остатка, в том числе ионы . Например, при растворении гидрокарбоната натрия диссоциация протекает согласно следующим уравнениям:

При диссоциации основных солей образуются анионы кислоты и сложные катионы, состоящие из металла и гидроксогрупп. Эти сложные катионы также способны к диссоциации. Поэтому в растворе основной соли присутствуют ионы . Например, при растворении хлорида гидроксомагния диссоциация протекает согласно уравнениям:

Таким образом, теория электролитической диссоциации объясняет общие свойства кислот присутствием в их растворах ионов водорода, а общие свойства оснований — присутствием в их растворах гидроксид-ионов. Это объяснение не является, однако, общим. Известны химические реакции, протекающие с участием кислот и оснований, к которым теория электролитической диссоциации неприменима.

В частности, кислоты и основания могут реагировать друг с другом, не будучи диссоциированы на ноны. Так, безводный хлороводород, состоящий только из молекул, легко реагирует с безводными основаниями. Кроме того, известны вещества, не имеющие в своем составе гидроксогрупп, но проявляющие свойства основании. Например, аммиак взаимодействует с кислотами и образует соли (соли аммония), хотя в его составе нет групп ОН. Так, с хлороводородом он образует типичную соль — хлорид аммония:

Изучение подобного рода реакций, а также реакций, протекающих в иеводиых средах, привело к созданию более общих представлений о кислотах и основаниях. К важнейшим из современных теории кислот и оснований принадлежит протонная теория, выдвинутая в 1923 г.

Согласно протонной теории, кислотой является донор протона, т. е. частниа (молекула или ион), которая способна отдавать ион водорода — прогон, а основанием — акцептор протона, т. е. частица (молекула или ион), способная присоединять протон. Соотношение между кислотой и основанием определяется схемой:

Связанные этим соотношением основание и кислота называются сопряженными. Например, является основанием, сопряженным кислоте .

Реакцию между кислотой и основанием протонная теория представляет схемой:

Читайте также:  Точка зрения о добре и зле

Например, в реакции

ион — основание, сопряженное кислоте , а ион — кислота, сопряженная основанию .

Существенным в протонной теории является то положение, что вещество проявляет себя как кислота или как основание в зависимости от того, с каким другим веществом оно вступает в реакцию. Важнейшим фактором при этом является энергия связи вещества с протоном. Так, в ряду эта энергия максимальна для и минимальна для HF. Поэтому в смеси с вода функционирует как кислота, а в смеси с HF — как основание:

Дата добавления: 2015-04-24 ; Просмотров: 2903 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Дайте определение оснований с точки зрения теории

Ответ оставил Гость

Основания электролиты, которые при диссоциации образуют анион ОН(-1)

LiOH, — литий гидроксид, Sr(OH)2- стронций гидроксид, KOH- калий гидроксид, ,RbOH- рубидий гидроксид,Al(OH)3- алюминий гидроксид, Ca(OH)2.- кальций гидроксид

Если ответа нет или он оказался неправильным по предмету Химия, то попробуй воспользоваться поиском на сайте или задать вопрос самостоятельно.

Если же проблемы возникают регулярно, то возможно Вам стоит обратиться за помощью. Мы нашли великолепную онлайн школу, которую без всяких сомнений можем порекомендовать. Там собраны лучшие преподаватели, которые обучили множество учеников. После обучения в этой школе, Вы сможете решать даже самые сложные задачи.

Дайте определение оснований с точки зрения теории

Кислоты. Для кислот характерны следующие общие свойства:

а) способность взаимодействовать с основаниями с образованием солей;

б) способность взаимодействовать с некоторыми металлами с выделением водорода;

в) способность изменять цвета индикаторов, в частности, вызывать красную окраску лакмуса;

При диссоциации любой кислоты образуются иокы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, мы должны объяснить присутствием гидратированных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т. д. С устранением ионов водорода, например при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода.

У сильных кислот, диссоциирующих нацело, свойства кислот проявляются в большей степени, у слабых — в меньшей. Чем лучше кислота диссоциирует, т. е. чем больше ее константа диссоциации, тем она сильнее.

Сравнивая данные, приведенные в табл. 12 и 14, можно заметить, что величины констант диссоциации кислот изменяются в очень широких пределах. В частности, константа диссоциации циановодорода много меньше, чем уксусной кислоты. И хотя обе эти кислоты — слабые, все же уксусная кислота значительно сильнее циановодорода. Величины первой и второй констант диссоциации серной кислоты показывают, что в отношении первой ступени диссоциации — сильная кислота, а в отношении второй — слабая. Кислоты, константы диссоциации которых лежат в интервале , иногда называют кислотами средней силы. К ним, в частности, относятся ортофосфорная и сернистая кислоты (в отношении диссоциации по первой ступени).

Основания. Водные растворы оснований обладают следующими общими свойствами:

а) способностью взаимодействовать с кислотами с образованием солей;

б) способностью изменять цвета индикаторов иначе, чем их изменяют кислоты (например, они вызывают синюю окраску лакмуса);

в) своеобразным «мыльным» вкусом.

Поскольку общим для всех растворов оснований является присутствие в них гидроксид-ионов, то ясно, что носителем основных свойств является гидроксид-ион. Поэтому с точки зрения теории электролитической диссоциации основания — это электролиты, диссоциирующие в растворах с отщеплением гидроксид-ионов.

Сила оснований, как и сила кислот, зависит от величины константы диссоциации. Чем больше константа диссоциации данного основания, тем оно сильнее.

Существуют гидроксиды, способные вступать во взаимодействие и образовывать соли не только с кислотами, но и с основаниями. К таким гидроксидам принадлежит гидроксид цинка. При взаимодействии его, например, с соляной кислотой получается хлорид цинка

а при взаимодействии с гидроксидом натрия — цинкат натрия;

Гидроксиды, обладающие этим свойством, называются амфотерными гидроксидами, или амфотерными электролитами. К таким гидроксидам кроме гидроксида цинка относятся гидроксиды алюминия, хрома и некоторые другие.

Явление амфотерности объясняется тем, что в молекулах амфотерных электролитов прочность связи между металлом и кислородом незначительно отличается от прочности связи между кислородом и водородом. Диссоциация таких молекул возможна, следовательно, по местам обеих этих связей. Если обозначить амфо-терный электролит формулой ROH, то его диссоциацию можно выразить схемой:

Таким образом, в растворе амфотериого электролита существует сложное равновесие, в котором участвуют продукты диссоциации как по типу кислоты, так и по типу основания.

Явление амфотерности наблюдается также среди некоторых органических соединений. Важную роль оно играет в биологической химии; например, белки — амфотерные электролиты.

Соли. Соли можно определить как электролиты, которые при растворении в воде диссоциируют, отщепляя положительные ионы, отличные от ионов водорода, и отрицательные ионы, отличные от гидроксид-ионов. Таких ионов, которые были бы общими для водных растворов всех солей, нет; поэтому соли и не обладают общими свойствами. Как правило, соли хорошо диссоциируют, и тем лучше, чем меньше заряды ионоз, образующих соль.

При растворении кислых солей в растворе образуются катионы металла, сложные анионы кислотного остатка, а также ионы, являющиеся продуктами диссоциации этого сложного кислотного остатка, в том числе ионы . Например, при растворении гидрокарбоната натрия диссоциация протекает согласно следующим уравнениям:

При диссоциации основных солей образуются анионы кислоты и сложные катионы, состоящие из металла и гидроксогрупп. Эти сложные катионы также способны к диссоциации. Поэтому в растворе основной соли присутствуют ионы . Например, при растворении хлорида гидроксомагния диссоциация протекает согласно уравнениям:

Таким образом, теория электролитической диссоциации объясняет общие свойства кислот присутствием в их растворах ионов водорода, а общие свойства оснований — присутствием в их растворах гидроксид-ионов. Это объяснение не является, однако, общим. Известны химические реакции, протекающие с участием кислот и оснований, к которым теория электролитической диссоциации неприменима.

В частности, кислоты и основания могут реагировать друг с другом, не будучи диссоциированы на ноны. Так, безводный хлороводород, состоящий только из молекул, легко реагирует с безводными основаниями. Кроме того, известны вещества, не имеющие в своем составе гидроксогрупп, но проявляющие свойства основании. Например, аммиак взаимодействует с кислотами и образует соли (соли аммония), хотя в его составе нет групп ОН. Так, с хлороводородом он образует типичную соль — хлорид аммония:

Изучение подобного рода реакций, а также реакций, протекающих в иеводиых средах, привело к созданию более общих представлений о кислотах и основаниях. К важнейшим из современных теории кислот и оснований принадлежит протонная теория, выдвинутая в 1923 г.

Согласно протонной теории, кислотой является донор протона, т. е. частниа (молекула или ион), которая способна отдавать ион водорода — прогон, а основанием — акцептор протона, т. е. частица (молекула или ион), способная присоединять протон. Соотношение между кислотой и основанием определяется схемой:

Связанные этим соотношением основание и кислота называются сопряженными. Например, является основанием, сопряженным кислоте .

Реакцию между кислотой и основанием протонная теория представляет схемой:

Например, в реакции

ион — основание, сопряженное кислоте , а ион — кислота, сопряженная основанию .

Существенным в протонной теории является то положение, что вещество проявляет себя как кислота или как основание в зависимости от того, с каким другим веществом оно вступает в реакцию. Важнейшим фактором при этом является энергия связи вещества с протоном. Так, в ряду эта энергия максимальна для и минимальна для HF. Поэтому в смеси с вода функционирует как кислота, а в смеси с HF — как основание:

Дайте определение оснований с точки зрения теории

Кислоты. Для кислот характерны следующие общие свойства:

а) способность взаимодействовать с основаниями с образованием солей;

б) способность взаимодействовать с некоторыми металлами с выделением водорода;

в) способность изменять цвета индикаторов, в частности, вызывать красную окраску лакмуса;

При диссоциации любой кислоты образуются иокы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, мы должны объяснить присутствием гидратированных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т. д. С устранением ионов водорода, например при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода.

Читайте также:  Каталог очков для зрения в казани

У сильных кислот, диссоциирующих нацело, свойства кислот проявляются в большей степени, у слабых — в меньшей. Чем лучше кислота диссоциирует, т. е. чем больше ее константа диссоциации, тем она сильнее.

Сравнивая данные, приведенные в табл. 12 и 14, можно заметить, что величины констант диссоциации кислот изменяются в очень широких пределах. В частности, константа диссоциации циановодорода много меньше, чем уксусной кислоты. И хотя обе эти кислоты — слабые, все же уксусная кислота значительно сильнее циановодорода. Величины первой и второй констант диссоциации серной кислоты показывают, что в отношении первой ступени диссоциации — сильная кислота, а в отношении второй — слабая. Кислоты, константы диссоциации которых лежат в интервале , иногда называют кислотами средней силы. К ним, в частности, относятся ортофосфорная и сернистая кислоты (в отношении диссоциации по первой ступени).

Основания. Водные растворы оснований обладают следующими общими свойствами:

а) способностью взаимодействовать с кислотами с образованием солей;

б) способностью изменять цвета индикаторов иначе, чем их изменяют кислоты (например, они вызывают синюю окраску лакмуса);

в) своеобразным «мыльным» вкусом.

Поскольку общим для всех растворов оснований является присутствие в них гидроксид-ионов, то ясно, что носителем основных свойств является гидроксид-ион. Поэтому с точки зрения теории электролитической диссоциации основания — это электролиты, диссоциирующие в растворах с отщеплением гидроксид-ионов.

Сила оснований, как и сила кислот, зависит от величины константы диссоциации. Чем больше константа диссоциации данного основания, тем оно сильнее.

Существуют гидроксиды, способные вступать во взаимодействие и образовывать соли не только с кислотами, но и с основаниями. К таким гидроксидам принадлежит гидроксид цинка. При взаимодействии его, например, с соляной кислотой получается хлорид цинка

а при взаимодействии с гидроксидом натрия — цинкат натрия;

Гидроксиды, обладающие этим свойством, называются амфотерными гидроксидами, или амфотерными электролитами. К таким гидроксидам кроме гидроксида цинка относятся гидроксиды алюминия, хрома и некоторые другие.

Явление амфотерности объясняется тем, что в молекулах амфотерных электролитов прочность связи между металлом и кислородом незначительно отличается от прочности связи между кислородом и водородом. Диссоциация таких молекул возможна, следовательно, по местам обеих этих связей. Если обозначить амфо-терный электролит формулой ROH, то его диссоциацию можно выразить схемой:

Таким образом, в растворе амфотериого электролита существует сложное равновесие, в котором участвуют продукты диссоциации как по типу кислоты, так и по типу основания.

Явление амфотерности наблюдается также среди некоторых органических соединений. Важную роль оно играет в биологической химии; например, белки — амфотерные электролиты.

Соли. Соли можно определить как электролиты, которые при растворении в воде диссоциируют, отщепляя положительные ионы, отличные от ионов водорода, и отрицательные ионы, отличные от гидроксид-ионов. Таких ионов, которые были бы общими для водных растворов всех солей, нет; поэтому соли и не обладают общими свойствами. Как правило, соли хорошо диссоциируют, и тем лучше, чем меньше заряды ионоз, образующих соль.

При растворении кислых солей в растворе образуются катионы металла, сложные анионы кислотного остатка, а также ионы, являющиеся продуктами диссоциации этого сложного кислотного остатка, в том числе ионы . Например, при растворении гидрокарбоната натрия диссоциация протекает согласно следующим уравнениям:

При диссоциации основных солей образуются анионы кислоты и сложные катионы, состоящие из металла и гидроксогрупп. Эти сложные катионы также способны к диссоциации. Поэтому в растворе основной соли присутствуют ионы . Например, при растворении хлорида гидроксомагния диссоциация протекает согласно уравнениям:

Таким образом, теория электролитической диссоциации объясняет общие свойства кислот присутствием в их растворах ионов водорода, а общие свойства оснований — присутствием в их растворах гидроксид-ионов. Это объяснение не является, однако, общим. Известны химические реакции, протекающие с участием кислот и оснований, к которым теория электролитической диссоциации неприменима.

В частности, кислоты и основания могут реагировать друг с другом, не будучи диссоциированы на ноны. Так, безводный хлороводород, состоящий только из молекул, легко реагирует с безводными основаниями. Кроме того, известны вещества, не имеющие в своем составе гидроксогрупп, но проявляющие свойства основании. Например, аммиак взаимодействует с кислотами и образует соли (соли аммония), хотя в его составе нет групп ОН. Так, с хлороводородом он образует типичную соль — хлорид аммония:

Изучение подобного рода реакций, а также реакций, протекающих в иеводиых средах, привело к созданию более общих представлений о кислотах и основаниях. К важнейшим из современных теории кислот и оснований принадлежит протонная теория, выдвинутая в 1923 г.

Согласно протонной теории, кислотой является донор протона, т. е. частниа (молекула или ион), которая способна отдавать ион водорода — прогон, а основанием — акцептор протона, т. е. частица (молекула или ион), способная присоединять протон. Соотношение между кислотой и основанием определяется схемой:

Связанные этим соотношением основание и кислота называются сопряженными. Например, является основанием, сопряженным кислоте .

Реакцию между кислотой и основанием протонная теория представляет схемой:

Например, в реакции

ион — основание, сопряженное кислоте , а ион — кислота, сопряженная основанию .

Существенным в протонной теории является то положение, что вещество проявляет себя как кислота или как основание в зависимости от того, с каким другим веществом оно вступает в реакцию. Важнейшим фактором при этом является энергия связи вещества с протоном. Так, в ряду эта энергия максимальна для и минимальна для HF. Поэтому в смеси с вода функционирует как кислота, а в смеси с HF — как основание:

Дайте определение оснований с точки зрения теории электролитической диссоциации

вопрос опубликован 15.01.2017 03:11:20

Основания — это электролиты, которые в водных растворах диссоциируют на катионы металлов и гидроксид-анионы, в качестве анионов при их диссоциации образуются только OH-.

Если сомневаешься в правильности ответа или его просто нет, то попробуй воспользоваться поиском на сайте и найти похожие вопросы по предмету Химия либо задай свой вопрос и получи ответ в течении нескольких минут.

Дайте определение оснований с точки зрения теории

Опубликовано в категории Химия, 21.06.2018 >>

Ответ оставил Гость

С точки зрения теории электролитической диссоциации основания — это вещества, диссоциирующие в водном растворе с образованием анионов одного вида — гидроксид — ионов ОН-.

В общем виде уравнение электролитической диссоциации основания имеет вид:

Основание -> Катион основания + Гидроксид — ион

NaOH Na++ OH

Ba(OH)2 Ba2++ 2OH-

NH3·H2O NH4++ OH-

Дать определение основаниям с точки зрения теории электролитической диссоциации. привести примеры

С точки зрения теории электролитической диссоциацииоснования — это вещества, диссоциирующие в водном растворе с образованием анионов одного вида — гидроксид — ионов ОН-.
В общем виде уравнение электролитической диссоциации основания имеет вид:
Основание -> Катион основания + Гидроксид — ион
NaOH Na++ OH-
Ba(OH)2 Ba2++ 2OH-
NH3·H2O NH4++ OH-

В общем виде уравнение электролитической диссоциации основания имеет вид:
Основание -> Катион основания + Гидроксид — ион
NaOH Na++ OH-
Ba(OH)2 Ba2++ 2OH-
NH3·H2O NH4++ OH-

дать определение основаниям с точки зрения теории электролитической диссоциации. привести примеры

С точки зрения теории электролитической диссоциации основания — это вещества, диссоциирующие в водном растворе с образованием анионов одного вида — гидроксид — ионов ОН-.

Другие вопросы из категории

молекулярную формулу данного углеводорода.

Читайте также

окислительно-восстановительных процессов в) рассмотрите последнее превращение с точки зрения теории электролитической диссоциации

в)рассмотрите последнее превращение с точки зрения теории электролитической диссоциации

рассмотрите последнее превращение с точки зрения теории электрической диссоциации

превращение с точки зрения окислительно-восстановительных процессов. в) Рассмотрите последнее превращение с точки зрения теории электролитической диссоциации.

2)дана схема превращений P—>P2O5—>X—>Na3PO4—>Ca3(PO4):

А. запишите молекулярное уравнение реакций превращений, определив вещество Х.

Б. рассмотрите первое превращение сточки зрения окислительно-восстановительных процессов.

В. рассмотрите последнее превращение с точки зрения теории электролитической диссоциации.

Источники:
  • http://studopedia.ru/7_43286_teoriya-kislot-i-osnovaniy.html
  • http://studopedia.su/15_96479_svoystva-kislot-osnovaniy-i-soley-s-tochki-zreniya-teorii-elektroliticheskoy-dissotsiatsii.html
  • http://shkolniku.com/himiya/task1809875.html
  • http://alnam.ru/book_chem.php?id=85
  • http://alnam.ru/book_chem.php?id=85
  • http://obrazovalka.ru/himiya/question-347264.html
  • http://usvaivalka.com/himiya/nm-4573488.html
  • http://wolpik.ru/question/3200591
  • http://geometria.neznaka.ru/answer/1494419_dat-opredelenie-osnovaniam-s-tocki-zrenia-teorii-elektroliticeskoj-dissociacii-privesti-primery/