Меню Рубрики

Дайте определение кислот с точки зрения теории электрической диссоциации

Электролитическая диссоциация — процесс распада электролита на ионы при его растворении или плавлении.

Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблукови В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс .

Вещества, распадающиеся на ионы, называют электролитами. Электролиты – вещества с ионной или сильно ковалентной связью: кислоты, основания, соли. остальные вещества – неэлектролиты; к ним относятся вещества с неполярной или слабо полярной ковалентной связью; например, многие органические соединения.

Основные положения ТЭД (Теории электролитической диссоциации):

Молекулы распадаются на положительно и отрицательно заряженные ионы (простые и сложные).

Под действием электрического тока катионы (положительно заряженные ионы движутся к катоду(-), а анионы (отрицательно заряженные ионы) к аноду(+)

Степень диссоциации зависит от природы вещества и растворителя, концентрации, температуры.

Если степень диссоциации зависит от природы вещества, то можно судить, что существует разграничение между определёнными группами веществ.

Большая степень диссоциации присуща сильным электролитам (большинству оснований, солям, многим кислотам). Стоит учесть, что распад на ионы – обратимая реакция. Так же стоит сказать, что в данной теме не будут разобраны примеры диссоциации двойных и основных солей, их диссоциация описана в теме “соли”.
Примеры сильных электролитов:
NaOH, K2SO4, HClO4
Уравнения диссоциации:
NaOH⇄Na + +OH —

Количественной характеристикой силы электролитов является степень диссоциации (α) – отношение молярной концентрации продиссоциировавшего электролита к его общей молярной концентрации в растворе.

Степень диссоциации выражается в долях единицы или в процентах. Интервал значений – от 0 до 100%.

α = 0% относится к неэлектролитам (диссоциация отсутствует)

У каждой ступени диссоциации своя степень диссоциации.
Например, диссоциация солей CuCl2, HgCl2:
CuCl2⇄Cu 2+ +2Cl — диссоциация протекает полностью

А в случае с хлоридом ртути диссоциация идёт неполностью и то не до конца.

Возвращаясь же к раствору серной кислоты, стоит сказать, что степень диссоциации обеих ступеней разбавленной кислоты гораздо больше, чем у концентрированной. При диссоциации концентрированного раствора очень много молекул вещества и большая концентрация гидроанионов HSO4 — .

У многоосновных кислот и многокислотных оснований диссоциация идёт в несколько ступеней (в зависимости от основности).

Перечислим сильные и слабые кислоты и приступим к уравнениям ионного обмена:
Сильные кислоты ( HCl, HBr, HI, HClO3, HBrO3, HIO3, HClO4, H2SO4, H2SeO4,HNO3, HMnO4, H2Cr2O7)

Химические реакции в растворах и расплавах электролитов протекают с участием ионов. В таких реакциях степени окисления элементов не изменяются, и сами реакции называются реакциями ионного обмена.

Реакции ионного обмена будут протекать до конца (необратимо) , если образуются малорастворимые или практически нерастворимые вещества (они выпадают в осадок), летучие вещества (выделяются в виде газов) или слабые электролиты (например, вода).

Реакции ионного обмена принято писать в три стадии:
1. Молекулярное уравнение
2. Полное ионное уравнение
3. Сокращенное ионное уравнение
При написании обязательно указывать осадки и газы, а так же руководствоваться таблицей растворимости.

Реакции, где все реагенты и продукты получились растворимые в воде, не протекают.

Сокращённое ионное уравнение получается с помощью вычёркивания одинаковых ионов из обеих частей полного ионного уравнения.

Если реакция ионного обмена идёт между двумя солями с образованием осадка, то следует брать два хорошо растворимых реагента. То есть, реакция ионного обмена пойдёт если растворимость реагентов будет выше, чем у одного из продуктов.

Иногда при написании реакций ионного обмена пропускают полное ионное уравнение и сразу пишут сокращенное.

Для получения осадка малорастворимого вещества всегда надо выбирать хорошо растворимые реагенты в их концентрированных растворах.
Например:
2KF+FeCl2→FeF2↓+2KCl

Данные правила подбора реагентов для осаждения продуктов справедливы только для солей.

Кислоты – это электролиты, диссоциирующие в растворах с образованием иона водорода.

НА Н + + А –

К общим свойствам кислот относят:

а) способность реагировать с основаниями с образованием солей и воды;

б) способность реагировать с некоторыми металлами с выделением водорода;

в) способность изменять цвета индикатора (например, вызывать красное окрашивание лакмуса);

Основания – это электролиты, диссоциирующие в растворе с образованием гидроксид-ионов:

КОН К + + ОН –

Общие свойства оснований:

а) способность взаимодействовать с кислотами с образованием солей и воды;

б) способность изменять цвет индикатора иначе, чем их изменяют кислоты (например, лакмус – синий);

Амфотерные гидроксиды способны диссоциировать в растворах в зависимости от условий, как с образованием иона водорода, так и с образованием гидроксид-ионов:

Н + + ЭО – ЭОН Э + + ОН –

Соли – электролиты, которые диссоциируют с образованием катиона, отличного от иона водорода, (например, металла) и аниона, отличного от гидроксид-иона (кислотные остатки)

После Аррениуса было показано, что определение кислот, солей и оснований в терминах теории электролитической диссоциации не охватывает всего многообразия кислотно-основных свойств веществ.

Так, например, в рамки приведенных определений не укладываются соли NH4Cl и хлорид фениламмония C6H5NH3Cl, основание NH3 и др.

Протонные кислоты.Электролитическая диссоциация явилась основой успешного развития теории растворов и изучения процессов, протекающих в них. В этом заключается ее большое значение в химии. Однако эта теория не объясняет процессов, протекающих в неводных растворах. Так, например, если хлорид аммония в водном растворе ведет себя как соль (диссоциирует на ионы NН4 + и Сl – ), то в жидком аммиаке он проявляет свойства кислоты, – растворяет металлы с выделением водорода. Как основание ведет себя азотная кислота, растворенная в жидком фтороводороде или в безводной серной кислоте. Эти факты не согласуются с теорией электролитической диссоциации. Их объясняет протолитическая теория кислот и оснований, предложенная в 1923 г. независимо датским ученым Бренстедом и английским ученым Лоури. Согласно этой теории кислотами являются вещества, молекулы или ионы, отщепляющие при данной реакции протоны (доноры протонов). Основаниями являются вещества, молекулы или ионы, присоединяющие протоны (акцепторы протонов). Как те, так и другие получили общее название протолитов.

Реакция отщепления протона изображается уравнением:

основание + Н + кислота

Кислота и основание такого процесса называется сопряженными. Это кислотно-основная пара. Например, ион H3О + – кислота, сопряженная основанию H2O, а хлорид-ион Cl – –основание, сопряженное кислоте HCl.

Свободные протоны в растворах самостоятельно не существуют. Они переходят от кислоты к какому-либо основанию. Поэтому в растворе всегда протекают два процесса:

кислота1 основание1 + Н +

основание2 + Н + кислота2

и равновесие между ними изображают уравнением:

кислота1 + основание2 основание1 + кислота2

Например, в реакции

HCl + NH3NH4 + + Cl –

Ион Cl – – основание, сопряженное кислоте HCl, а ион NH4 + — кислота, сопряженная основанию NH3.

Протолитическая теория расширила круг кислот и оснований по сравнению с представлениями теории электролитической диссоциации: ими могут быть и ионы. Одно и то же вещество в зависимости от того, с чем оно реагирует, может быть или кислотой, или основанием. Теория вскрыла относительность понятий о кислотах и основаниях и показала, что продукты их взаимодействия следует рассматривать как новые кислоты и основания. Протолитическая теория является современной и более общей теорией кислот и оснований.

Кислоты Льюиса.Еще более общее определение кислот и оснований предложил Г. Льюис. Он предположил, что кислотно-основные взаимодействия совсем необязательно происходят с переносом протона.В определении кислот и оснований по Льюису основная роль отводится участию электронных пар в химическом взаимодействии.

Катионы, анионы или нейтральные молекулы, способные принять одну или несколько пар электронов, называют кислотами Льюиса.Например, фторид алюминия АlF3 – кислота, способная принимать электронную пару при взаимодействии с аммиаком:

AlF3+ :NH3[AlF3]:[NH3]

Катионы, анионы или нейтральные молекулы, способные отдавать электронные пары, называют основаниями Льюиса.Определение Г. Льюиса охватывает все кислотно-основные процессы, рассмотренные ранее предложенными теориями.

Дата добавления: 2016-12-03 ; просмотров: 826 | Нарушение авторских прав

18.Характеристики кислот, оснований и солей с точки зрения теории электролитической диссоциации. Амфотерность гидроксидов.

Диссоциация оснований. Согласно теории электролитической диссоциации, основания – это электролиты, которые при диссоциации образуют только один вид анионов – гидроксид-ионы OH  : NaOH  Na + + OH  ; Ca(OH)2  CaOH + + OH  ; CaOH +  Ca 2+ + OH  .

Ступенчатость диссоциации обусловливает возможность образования основных и кислых (см. ниже) солей.

Диссоциация кислот. Кислоты – это электролиты, которые при диссоциации образуют только один вид катионов – катионы водорода H + . HCl  H + + Cl  ; HNO3  H + + NO3  ; H2SO4  H + + HSO4  — ; HSO4   H + + SO4 2  ; H3PO4  H + + H2PO4  ; H2PO4   H + + HPO4 2  ; HPO4 2   H + + PO4 3  .

Диссоциация амфотерных гидроксидов. Амфотерные гидроксиды дис-социируют в водном растворе как по типу кислоты, так и по типу основания. При их диссоциации одновременно образуются катионы H + и гидроксид-анионы OH  : H + + MeO  ⇄ MeOH ⇄ Me + + OH  .

К ним относятся гидроксиды цинка Zn(OH)2, алюминия Al(OH)3, хрома Cr(OH)3, свинца Pb(OH)2 и др.

1. Средние соли – это электролиты, при диссоциации которых в водных растворах образуются катионы металла и анионы кислотного остатка. Напри-мер, Na2SO42 Na + + SO4 2  ; Ca3(PO)43 Ca 2+ + 2 PO4 3  .

2.Кислые соли при растворении в воде образуют катион металла и сложный анион из атомов водорода и кислотного остатка: KHSO3  K + + HSO3  ( = 1).

Сложный анион диссоциирует частично: HSO3  ⇄ H + + SO3 2  (  : Al(OH)2Cl  Al(OH)2 + + Cl  ( = 1).

Сложный катион диссоциирует частично: Al(OH)2 + ⇄ AlOH 2+ + OH  ( 2+ ⇄ Al 3+ + OH  ( + + Al 3+ + 2 SO4 2  ;

Сложные соли диссоциируют на катион металла и анионы кислотных остатков. Например, ZnClNO3  Zn 2+ + Cl  + NO3  ;

Читайте также:  Одежда женщины с точки зрения психологии

19. Окислительно-восстановительные реакции (овр). Степень окисления атомов Основные окислители и восстановители. Составление уравнений овр методами электронного и электронно-ионного баланса.

ОВР-реакции, протекающие с изменением степени окисления.

Окисление – это процесс отдачи электронов при этом происходит понижение степени окисления.

Восстановление – это процесс присоединения электронов, при этом происходит понижение степени окисления.

Реакции, в кот. ок-ль. и восст-ль предс. собой различные ве-ва наз. межмолеклярными. Если ок-ль и восс-ль атомы одной молекулы — внутримолекулярные.

Под степенью окисления (окислительным числом) понимают условный заряд атома в соединении, вычисленный из предположения, что в молекуле все связи ионные. Степень окисления указывает, сколько электронов оттянуто от атома (положительная степень окисления) или притянуто к нему от другого атома (отрицательная степень окисления). Мера удаления или приближения электронов к атому в степени окисления не отражена.Восстановители

а) Металлы как простые вещества: K 0 , Na 0 , Ca 0 , Al 0 и др.

б) Простые анионы неметаллов: S 2  , Cl  , J  , Br  , Se 2  и др.

в) Сложные анионы и молекулы, содержащие электроположитель-ные элементы в промежуточной степени окисления: S +4 O3 2  , N +3 O2  , As +3 O3 3  , Cr +3 O2  , [Fe +2 (CN)6] 4  , C +2 O, N +2 O, S +4 O2 и др.

г) Простые катионы в низшей степени окисления: Fe 2+ , Sn 2+ , Cr 3+ , Cu + , Mn 2+ , As 3+ и др.

д) Некоторые простые вещества:

е) Катод при электролизе.

а) Неметаллы как простые вещества с большой электроотрицательностью: F2, O2, Cl2 и др.

б) Простые катионы в высокой степени окисления: Sn 4+ , Fe 3+ , Cu 2+ и др., а также H + .

г) Сложные ионы и молекулы, содержащие атомы неметаллов в положительной степени окисления: H2S +6 O4, S +6 O3, HOCl +1 , HCl +5 O3,

д) Анод при электролизе.

В соединениях, когда атомы находятся в промежуточной степени окисления, последние могут проявлять как восстановительные, так и окислительные свойства (окислительно-восстановительная двойствен-ность):

Применяют два метода составления уравнений реакций окисления-восстановления:

Теория электрической диссоциации

Электролитическая диссоциация — процесс распада электролита на ионы при его растворении или плавлении.

Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблукови В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс .

Вещества, распадающиеся на ионы, называют электролитами. Электролиты – вещества с ионной или сильно ковалентной связью: кислоты, основания, соли. остальные вещества – неэлектролиты; к ним относятся вещества с неполярной или слабо полярной ковалентной связью; например, многие органические соединения.

Основные положения ТЭД (Теории электролитической диссоциации):

Молекулы распадаются на положительно и отрицательно заряженные ионы (простые и сложные).

Под действием электрического тока катионы (положительно заряженные ионы движутся к катоду(-), а анионы (отрицательно заряженные ионы) к аноду(+)

Степень диссоциации зависит от природы вещества и растворителя, концентрации, температуры.

Если степень диссоциации зависит от природы вещества, то можно судить, что существует разграничение между определёнными группами веществ.

Большая степень диссоциации присуща сильным электролитам (большинству оснований, солям, многим кислотам). Стоит учесть, что распад на ионы – обратимая реакция. Так же стоит сказать, что в данной теме не будут разобраны примеры диссоциации двойных и основных солей, их диссоциация описана в теме “соли”.
Примеры сильных электролитов:
NaOH, K2SO4, HClO4
Уравнения диссоциации:
NaOH⇄Na + +OH —

Количественной характеристикой силы электролитов является степень диссоциации (α) – отношение молярной концентрации продиссоциировавшего электролита к его общей молярной концентрации в растворе.

Степень диссоциации выражается в долях единицы или в процентах. Интервал значений – от 0 до 100%.

α = 0% относится к неэлектролитам (диссоциация отсутствует)

У каждой ступени диссоциации своя степень диссоциации.
Например, диссоциация солей CuCl2, HgCl2:
CuCl2⇄Cu 2+ +2Cl — диссоциация протекает полностью

А в случае с хлоридом ртути диссоциация идёт неполностью и то не до конца.

Возвращаясь же к раствору серной кислоты, стоит сказать, что степень диссоциации обеих ступеней разбавленной кислоты гораздо больше, чем у концентрированной. При диссоциации концентрированного раствора очень много молекул вещества и большая концентрация гидроанионов HSO4 — .

У многоосновных кислот и многокислотных оснований диссоциация идёт в несколько ступеней (в зависимости от основности).

Перечислим сильные и слабые кислоты и приступим к уравнениям ионного обмена:
Сильные кислоты ( HCl, HBr, HI, HClO3, HBrO3, HIO3, HClO4, H2SO4, H2SeO4,HNO3, HMnO4, H2Cr2O7)

Химические реакции в растворах и расплавах электролитов протекают с участием ионов. В таких реакциях степени окисления элементов не изменяются, и сами реакции называются реакциями ионного обмена.

Реакции ионного обмена будут протекать до конца (необратимо) , если образуются малорастворимые или практически нерастворимые вещества (они выпадают в осадок), летучие вещества (выделяются в виде газов) или слабые электролиты (например, вода).

Реакции ионного обмена принято писать в три стадии:
1. Молекулярное уравнение
2. Полное ионное уравнение
3. Сокращенное ионное уравнение
При написании обязательно указывать осадки и газы, а так же руководствоваться таблицей растворимости.

Реакции, где все реагенты и продукты получились растворимые в воде, не протекают.

Сокращённое ионное уравнение получается с помощью вычёркивания одинаковых ионов из обеих частей полного ионного уравнения.

Если реакция ионного обмена идёт между двумя солями с образованием осадка, то следует брать два хорошо растворимых реагента. То есть, реакция ионного обмена пойдёт если растворимость реагентов будет выше, чем у одного из продуктов.

Иногда при написании реакций ионного обмена пропускают полное ионное уравнение и сразу пишут сокращенное.

Для получения осадка малорастворимого вещества всегда надо выбирать хорошо растворимые реагенты в их концентрированных растворах.
Например:
2KF+FeCl2→FeF2↓+2KCl

Данные правила подбора реагентов для осаждения продуктов справедливы только для солей.

С точки зрения теории электролитической диссоциации

Кислоты – это электролиты, диссоциирующие в растворах с образованием иона водорода.

НА Н + + А –

К общим свойствам кислот относят:

а) способность реагировать с основаниями с образованием солей и воды;

б) способность реагировать с некоторыми металлами с выделением водорода;

в) способность изменять цвета индикатора (например, вызывать красное окрашивание лакмуса);

Основания – это электролиты, диссоциирующие в растворе с образованием гидроксид-ионов:

КОН К + + ОН –

Общие свойства оснований:

а) способность взаимодействовать с кислотами с образованием солей и воды;

б) способность изменять цвет индикатора иначе, чем их изменяют кислоты (например, лакмус – синий);

Амфотерные гидроксиды способны диссоциировать в растворах в зависимости от условий, как с образованием иона водорода, так и с образованием гидроксид-ионов:

Н + + ЭО – ЭОН Э + + ОН –

Соли – электролиты, которые диссоциируют с образованием катиона, отличного от иона водорода, (например, металла) и аниона, отличного от гидроксид-иона (кислотные остатки)

После Аррениуса было показано, что определение кислот, солей и оснований в терминах теории электролитической диссоциации не охватывает всего многообразия кислотно-основных свойств веществ.

Так, например, в рамки приведенных определений не укладываются соли NH4Cl и хлорид фениламмония C6H5NH3Cl, основание NH3 и др.

Протонные кислоты.Электролитическая диссоциация явилась основой успешного развития теории растворов и изучения процессов, протекающих в них. В этом заключается ее большое значение в химии. Однако эта теория не объясняет процессов, протекающих в неводных растворах. Так, например, если хлорид аммония в водном растворе ведет себя как соль (диссоциирует на ионы NН4 + и Сl – ), то в жидком аммиаке он проявляет свойства кислоты, – растворяет металлы с выделением водорода. Как основание ведет себя азотная кислота, растворенная в жидком фтороводороде или в безводной серной кислоте. Эти факты не согласуются с теорией электролитической диссоциации. Их объясняет протолитическая теория кислот и оснований, предложенная в 1923 г. независимо датским ученым Бренстедом и английским ученым Лоури. Согласно этой теории кислотами являются вещества, молекулы или ионы, отщепляющие при данной реакции протоны (доноры протонов). Основаниями являются вещества, молекулы или ионы, присоединяющие протоны (акцепторы протонов). Как те, так и другие получили общее название протолитов.

Реакция отщепления протона изображается уравнением:

основание + Н + кислота

Кислота и основание такого процесса называется сопряженными. Это кислотно-основная пара. Например, ион H3О + – кислота, сопряженная основанию H2O, а хлорид-ион Cl – –основание, сопряженное кислоте HCl.

Свободные протоны в растворах самостоятельно не существуют. Они переходят от кислоты к какому-либо основанию. Поэтому в растворе всегда протекают два процесса:

кислота1 основание1 + Н +

основание2 + Н + кислота2

и равновесие между ними изображают уравнением:

кислота1 + основание2 основание1 + кислота2

Например, в реакции

HCl + NH3NH4 + + Cl –

Ион Cl – – основание, сопряженное кислоте HCl, а ион NH4 + — кислота, сопряженная основанию NH3.

Протолитическая теория расширила круг кислот и оснований по сравнению с представлениями теории электролитической диссоциации: ими могут быть и ионы. Одно и то же вещество в зависимости от того, с чем оно реагирует, может быть или кислотой, или основанием. Теория вскрыла относительность понятий о кислотах и основаниях и показала, что продукты их взаимодействия следует рассматривать как новые кислоты и основания. Протолитическая теория является современной и более общей теорией кислот и оснований.

Кислоты Льюиса.Еще более общее определение кислот и оснований предложил Г. Льюис. Он предположил, что кислотно-основные взаимодействия совсем необязательно происходят с переносом протона.В определении кислот и оснований по Льюису основная роль отводится участию электронных пар в химическом взаимодействии.

Катионы, анионы или нейтральные молекулы, способные принять одну или несколько пар электронов, называют кислотами Льюиса.Например, фторид алюминия АlF3 – кислота, способная принимать электронную пару при взаимодействии с аммиаком:

Читайте также:  Какие капли можно капать после лазерной коррекции зрения

AlF3+ :NH3[AlF3]:[NH3]

Катионы, анионы или нейтральные молекулы, способные отдавать электронные пары, называют основаниями Льюиса.Определение Г. Льюиса охватывает все кислотно-основные процессы, рассмотренные ранее предложенными теориями.

Дата добавления: 2016-12-03 ; просмотров: 827 | Нарушение авторских прав

Эквивалентная (Нормальная) концентрация

это число эквивалентов в 1 литре раствора. Обозначают символом Сн

0,1 нормальный раствор — децинормальный.

Мольная доля — это величина, характеризующая отношение количества молей данного вещества к общему количеству молей всех веществ, находящихся в смеси или растворе. Для того чтобы определить мольные доли веществ, необходима лишь таблица Менделеева и элементарное умение совершать вычисления.

Чтобы определить мольную долю того или иного вещества, вам понадобится сначала вычислить количество молей и этого вещества и всех других веществ, содержащихся в смеси (растворе), потом подставить эти величины в следующую формулу:Х = n1/Σn , где Х – мольная доля интересующего нас вещества, n1 – количество его молей, а Σn – сумма количества молей всех имеющихся веществ.

Электролитическая диссоциация. Влияние природы вещества на его способность к электролитической диссоциации в водном растворе. Гидратация ионов в растворе. Основания и кислоты с точки зрения теории электролитической диссоциации. Ион гидроксония. Амфотерные гидроксиды. Кислотно-основной характер диссоциации. Диссоциация средних, кислых и основных солей.

Под электролитической диссоциацией понимают распад молекул электролита в растворе с образованием положительно и отрицательно заряженных ионов – катионов и анионов. Например, молекула уксусной кислоты так диссоциирует в водном растворе:

CH3COOH === + СО

Процесс диссоциации во всех случаях является обратимым, поэтому при надписи уравнений диссоциации применяется знак обратимости(стрелочки –туда и обратно).

Электролитическая диссоциация — процесс распада электролита на ионы при его растворении или плавлении.

Гидратация ионов во многом определяет их поведение в растворе — она влияет на скорость передвижения ионов, на условия их взаимного сближения и адсорбции на разделах фаз. Чем больше и устойчивей гидратная оболочка, тем труднее перемещаться ионам в воде и сближаться друг с другом или адсорбироваться.

С точки зрения теории электролитической диссоциации основания — это вещества, диссоциирующие в водном растворе с образованием анионов одного вида — гидроксид-ионов ОН-.

В общем виде уравнение электролитической диссоциации основания имеет вид:

NаОН « Na+ + OH-; Ва(ОН)2 « Ba2+ + 2OH-; NH3·H2O « NH4+ + OH-.

С точки зрения теории электролитической диссоциации кислоты — это вещества, диссоциирующие в водном растворе с образованием катионов одного вида — катионов водорода Н+,

В общем виде уравнение электролитической диссоциации кислоты имеет вид:

СН3СООН = Н+ + СН3СОО-.

Гидроксо́ний (оксоний, гидроний) НзО+ — комплексный ион, соединение протона с молекулой воды.

Амфоте́рные гидрокси́ды — неорганические соединения, гидроксиды амфотерных элементов, в зависимости от условий проявляющие свойства кислотных или осно́вных гидроксидов.

Все амфотерные гидроксиды являются твёрдыми веществами. Нерастворимы в воде, в основном являются слабыми электролитами.

При нагревании разлагаются с образованием соответствующего амфотерного оксида, например:

В ряде случаев промежуточным продуктом при разложении является метагидроксид, например:

При взаимодействии с кислотами образуют соли с амфотерным элементом в катионе, например:

При взаимодействии со щёлочью образуют соли с амфотерным элементом в анионе, например:

Соли – это электролиты, которые диссоциируют в растворе на катионы металлов (и NH4+) и анионы кислотных остатков. Соли по своему составу бывают кислые, основные и средние. Кислые соли характерны для слабых многоосновных кислот, основные – для слабых многокислотных оснований, а средние соли могут быть образованы как сильными, так и слабыми кислотами и основаниями. Однако независимо от состава, соли первично диссоциируют на катион металла и кислотный остаток.

Средняя соль AICI3 Û AI+3 + 3CI- , ZnSO4 Û Zn+2 + SO42-.

Кислая соль KHCO3 Û K+ + HCO3- NaH2PO4 Û Na+ + H2PO4

Основная соль— ZnOHCI Û ZnOH+ + CI- Cr(OH)2NO3 Û Cr(OH)2+ + NO3-

Сильные и слабые электролиты. Степень диссоциации электролитов. Факторы, определяющие степень диссоциации. Основные представления теории сильных электролитов. Истинная и кажущаяся степень диссоциации в растворах сильных электролитов. Концентрация ионов в растворе и активность.

В растворах некоторых электролитов диссоциирует лишь часть молекул. Способность вещества к электролитической диссоциации называется степенью диссоциации. Она показывает отношение числа молекул, продиссоциированных на ионы, к общему числу молекул растворенного электролита: α = п/N ,

где α— степень диссоциации; п — количество ионов в растворе;

N— общее число молекул в растворе.

По степени диссоциации в растворах все электролиты делятся на две группы. К первой группе относят электролиты, степень диссоциации которых в растворах α > 30 % и почти не зависит от концентрации раствора. Их называют сильными электролитами. К сильным электролитам в водных растворах относятся щелочи: КОН, NaOH, Ba(OH)2, Са(ОН)2; кислоты: HNO3, НСl, H2SO4, НClO4, а также их соли.

Электролиты, степень диссоциации которых в растворах α K2 > K3 = 8 · 10-3 > 6 · 10-8>10-12

Суммарному равновесию: H3PO4 ↔ 3H+ + PO43- отвечает суммарная константа диссоциации: K = K1· K2 ·K3

Закон разбавления Оствальда. Степень диссоциации определяется константой диссоциации и концентрацией слабого электролита в растворе.

Рассмотрим равновесные молярные концентрации исходного слабого электролита и образовавшихся катионов и анионов в состоянии химического равновесия:

Молярные концентрации веществ В начальный момент времени (τ0) К моменту достижения равновесия (τравн.) MA с0 [MA] = (1−α )с0 M+ [M+] = αс0 A− [A−] = αс0

Данное выражение было впервые выведено немецким физико-химиком В. Оствальдом (закон разбавления Оствальда). Закон разбавления показывает, что степень диссоциации данного слабого электролита зависит от его концентрации и константы диссоциации. Последняя в данном растворителе и для данного электролита зависит только от температуры.

При очень низкой степени диссоциации (α о С), она называется ионным произведением воды KW:

Диссоциация воды – процесс эндотермический, поэтому с повышением температуры в соответствии с принципом Ле-Шателье диссоциация усиливается, ионное произведение возрастает и достигает при 100 о С значения 10 -13 .

В чистой воде при 25 о С концентрации ионов водорода и гидроксила равны между собой:

[H + ] = [OH — ] = 10 -7 моль/л

Растворы, в которых концентрации ионов водорода и гидроксила равны между собой, называются нейтральными.

Если к чистой воде прибавить кислоту, концентрация ионов водорда повысится и станет больше, чем 10 -7 моль/л, среда станет кислой, при этом концентрация ионов гидроксила мгновенно изменится так, чтобы ионное произведение воды сохранило свое значение 10 -14 . Тоже самое будет происходить и при добавлении к чистой воде щелочи. Концентрации

ионов водорода и гидроксила связаны между собой через ионное произведение, поэтому, зная концентрацию одного из ионов, легко вычислить концентрацию другого. Например, если [H + ] = 10 -3 моль/л, то [OH — ] = KW/[H + ] = 10 -14 /10 -3 = 10 -11 моль/л, или, если [OH — ] = 10 -2 моль/л, то [H + ] = KW/[OH — ] = 10 -14 /10 -2 = 10 -12 моль/л. Таким образом, концентрация ионов водорода или гидроксила может служить количественной характеристикой кислотности или щелочности среды.

На практике пользуются не концентрациями ионов водорода или гидроксила, а водородным рН или гидроксильным рОН показателями.

Водородный показатель рН равен отрицательному десятичному логарифму концентрации ионов водорода:

Гидроксильный показатель рОН равен отрицательному десятичному логарифму концентрации ионов гидроксила:

Легко показать, прологарифмировав ионное произведение воды, что

Если рН среды равен 7 — среда нейтральная, если меньше 7 — кислая, причем чем меньше рН, тем выше концентрация ионов водорода. pН больше 7 – среда щелочная, чем больше рН, тем выше концентрация ионов гидроксила.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8019 — | 6883 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

ОСНОВАНИЯ, КИСЛОТЫ И СОЛИ В ТЕОРИИ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

Читайте также:

  1. A-аминокислоты. Пептиды
  2. I. МЕХАНИКА И ЭЛЕМЕНТЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
  3. I. МЕХАНИКА И ЭЛЕМЕНТЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
  4. III. Методы исследования в области теории исторической науки
  5. N В этом случае образуется больше ксантина и, следовательно, мочевой кислоты
  6. N Оценивается базальная и стимулированная секреция соляной кислоты (стимулируют пантагастрином)
  7. А. Изучение конкурентоспособности производителя исходя из теории равновесия
  8. А. Теории трансакционного спроса на деньги.
  9. Австрийская школа экономической теории
  10. Аксиоматический способ построения теории
  11. АКСИОМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ
  12. Альтернативные (современные) теории мировой торговли

Основания. Название «основания» первоначально было отнесено к веще­ствам, которые в реакциях с кислотами образуют соли. К основаниям при­надлежат гидроксиды многих металлов.

Водные растворы таких оснований, как NаОН, КОН и Ва(ОН)2, обла­дают сильнощелочными свойствами, поэтому эти вещества и некоторые дру­гие называют щелочами.

С точки зрения теории электролитической диссоциации основания — это вещества, диссоциирующие в водном растворе с обра­зованием анионов одного вида — гидроксид-ионов ОН — .

В общем виде уравнение электролитической диссоциации основания имеет вид:

NаОН « Na + + OH — ; Ва(ОН)2 « Ba 2+ + 2OH — ; NH3·H2O « NH4 + + OH — .

Гидроксиды металлов типа NаОН и Ва(ОН)2, представляющие собой ионные кристаллы, являются сильными электролитами, а гидрат аммиака (ковалентное соединение) — это слабое основание.

Некоторые из щелочей аналогично диссоциируют и при плавлении, например КОН.

Большинство же основных гидроксидов разлагаются при нагревании на оксиды и воду еще до плавления.

Основания — гидроксиды металлов — могут быть получены при взаимо­действии неблагородных металлов с водой или основных оксидов с водой: 2Nа + 2Н2О = 2 NаОН + Н2, СаО + Н2О = Са(ОН)2.

Оксиды металлов, которые подобным путем образуют основания, раньше называли основными ангидридами.

Типичные свойства оснований по Аррениусу связаны с тем, что они поставляют в водный раствор гидроксид-ионы ОН — . На этом основано об­наружение щелочей с помощью индикаторов. Так, самый распространенный в лаборатории индикатор — лакмус окрашивается растворами щелочей в си­ний цвет.

Кислоты. Кислоты исторически получили такое название из-за кислого вкуса водных растворов таких веществ, как хлороводород или уксусная кислота.

Читайте также:  Ухудшение зрения после лазерной коррекции ласик

С точки зрения теории электролитической диссоциации

кислоты — это вещества, диссоциирующие в водном растворе с образова­нием катионов одного вида — катионов водорода Н + ,

В общем виде уравнение электролитической диссоциации кислоты имеет вид:

Таким образом, характеристической составной частью всех кислот яв­ляется водород, способный диссоциировать в водный раствор.

кислота — это водородсодержащее соединение, водород которого может быть замещен на металл с образованием соли: Мg + Н2SO4 = МgSO4 + Н2

Следует различать кислородсодержащие кислоты и бескислородные кислоты.

Все кислоты являются потенциальными электролитами в водном рас­творе. Под воздействием полярных моле­кул воды они отщепляют катионы водорода, которые мгновенно гидратируются водой и образуют катионы оксония Н3О + , так как простые катионы водорода Н + , являющиеся по существу индивидуальными протонами р + , не способны к существованию в водном растворе. Среди кислот есть как сильные электролиты (Н24, НМО3, НС1), так и слабые (Н2СO3, Н2S).

Кислородсодержащие кислоты могут быть получены взаимодействием кислотных оксидов с водой: СО2 + Н2О = Н3СО3; SО3 + Н2О = Н24.

Ранее такие оксиды неметаллов называли кислотными ангидридами. Мно­гим неметаллам, ввиду многообразия их степеней окисления, отве­чает несколько кислородсодержащих кислот. Для хлора известны: НСlO4 — хлорная кислота, НСlO2 — хлористая кислота, НС1О3 — хлорноватая кислота, НСlO — хлорноватистая кислота.

Металлы, которые проявляют несколько степеней окисления, также мо­гут образовывать кислотные оксиды и кислоты.

Многоосновные кислоты, содержащие в молекулах по два или несколько атомов водорода, способных замещаться на атомы металла, обычно являются слабыми электролитами и диссоциируют ступенчато, причем каждая сле­дующая стадия протекает в значительно меньшей степени, чем предыдущая: Н3PO4 « н + + н2РО4

Типичные свойства кислот по Аррениусу связаны с тем, что они постав­ляют в водный раствор катионы водорода Н + (Н3О + ). На этом основано об­наружение кислот с помощью индикаторов. Так, самый распространенный в лаборатории индикатор — лакмус окрашивается растворами кислот в крас­ный цвет.

Соли. С точки зрения теории электролитической диссоциации соли — это вещества, которые в водном растворе диссоциируют с обра­зованием катионов основания и анионов кислотного остатка: BaС12 = Ba 2+ + 2С1.

Дата добавления: 2014-01-07 ; Просмотров: 1670 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Электролитическая диссоциация

Самопроизвольный частичный или полный распад растворенных электролитов на ионы называется электролитической диссоциацией. Термин «ионы» введен английским физиком М. Фарадеем (1833). Теория электролитической диссоциации была сформулирована шведским ученым С. Аррениусом (1887) для объяснения свойств водных растворов электролитов. В дальнейшем она развивалась многими учеными на основе учения о строении атома и химической связи. Современное содержание этой теории можно свести к следующим трем положениям:

1. Электролиты при растворении в воде диссоциируют (распадаются) на ионы — положительно и отрицательно заряженные. («Ион» в переводе с греческого означает «странствующий». В растворе ионы беспорядочно движутся в различных направлениях.)

2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные движутся к катоду, отрицательно заряженные — к аноду. Поэтому первые называются катионами, вторые — анионами. Направленное движение ионов происходит в результате притяжения их противоположно заряженных электродами.

3. Диссоциация — обратимый процесс. Это означает, что наступает такое состояние равновесия, при котором сколько молекул распадается на ионы (диссоциация), столько их вновь образуется из ионов (ассоциация). Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости.

где KA — молекула электролита, K + — катион, A − — анион.

Учение о химической связи помогает ответить на вопрос, почему электролиты диссоциируют на ионы. Легче всего диссоциируют вещества с ионной связью, так как они уже состоят из ионов (см. Химическая связь). При их растворении диполи воды ориентируются вокруг положительного и отрицательного ионов. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор. Аналогично диссоциируют и электролиты, молекулы которых образованы по типу ковалентной полярной связи. Диссоциация полярных молекул может быть полной или частичной — всё зависит от степени полярности связей. В обоих случаях (при диссоциации соединений с ионной и полярной связью) образуются гидратированные ионы, т. е. ионы, химически связанные с молекулами воды.

Основоположником такого взгляда на электролитическую диссоциацию был почетный академик И. А. Каблуков. В отличие от теории Аррениуса, не учитывавшей взаимодействия растворенного вещества с растворителем, И. А. Каблуков к объяснению электролитической диссоциации применил химическую теорию растворов Д. И. Менделеева. Он показал, что при растворении происходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы. И. А. Каблуков полагал, что в водном растворе содержатся только гидратированные ионы. В настоящее время это представление общепринято. Итак, гидратация ионов — основная причина диссоциации. В других, неводных растворах электролитов химическая связь между частицами (молекулами, ионами) растворенного вещества и частицами растворителя называется сольватацией.

Гидратированные ионы имеют как постоянное, так и переменное число молекул воды. Гидрат постоянного состава образует ионы водорода Н + , удерживающие одну молекулу воды,— это гидратированный протон H + (H2O). В научной литературе его принято изображать формулой H3O + (или OH3 + ) и называть ионом гидроксония.

Поскольку электролитическая диссоциация — процесс обратимый, то в растворах электролитов наряду с их ионами присутствуют и молекулы. Поэтому растворы электролитов характеризуются степенью диссоциации (обозначается греческой буквой а). Степень диссоциации — это отношение числа молекул, распавшихся на ионы, n к общему числу растворенных молекул N:

Степень диссоциации электролита определяется опытным путем и выражается в долях единицы или в процентах. Если α = 0, то диссоциация отсутствует, а если α = 1, или 100%, то электролит полностью распадается на ионы. Различные электролиты имеют различную степень диссоциации. С разбавлением раствора она увеличивается, а при добавлении одноименных ионов (одинаковых с ионами электролита) — уменьшается.

Однако для характеристики способности электролита диссоциировать на ионы степень диссоциации не очень удобная величина, так как она. зависит от концентрации электролита. Более общей характеристикой является константа диссоциации K. Ее легко вывести, применив закон действия масс к равновесию диссоциации электролита (1):

где KA — равновесная концентрация электролита, [K + ] и [A − ] — равновесные концентрации его ионов (см. Равновесие химическое). K от концентрации не зависит. Она зависит от природы электролита, растворителя и температуры. Для слабых электролитов чем больше K (константа диссоциации), тем сильнее электролит, тем больше ионов в растворе.

Сильные электролиты констант диссоциации не имеют. Формально их можно вычислить, но они не будут постоянными при изменении концентрации.

Многоосновные кислоты диссоциируют по ступеням, а значит, такие кислоты будут иметь несколько констант диссоциации — для каждой ступени свою. Например:

Всегда K1>K2>K3, т.е. многоосновная кислота при диссоциации по первой ступени ведет себя как более сильная кислота, чем по второй или третьей.

Ступенчатой диссоциации подвергаются и многокислотные основания. Например:

Pb(OH) + ↔ Pb2 + + OH −

Кислые и основные соли также диссоциируют ступенчато. Например:

Mg(OH)Cl ↔ Mg(OH) + + Cl −

Mg(OH) + ↔ Mg 2+ + OH −

При этом на первой ступени соль полностью распадается на ионы, что обусловлено ионным характером связи между Na + и HSO3 − ; Mg(OH) + и Cl − ; диссоциация по второй ступени незначительная, так как заряженные частицы (ионы) дальнейшей диссоциации подвергаются как очень слабые электролиты.

С точки зрения теории электролитической диссоциации даются определения и описываются свойства таких классов химических соединений, как кислоты, основания, соли.

Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только ионы водорода. Например:

Все общие характерные свойства кислот — кислый вкус, изменение цвета индикаторов, взаимодействие с основаниями, основными оксидами, солями — обусловлены присутствием ионов водорода Н + , точнее Н3O + .

Основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы:

Ca(OH) + ↔ Ca 2+ + OH −

Согласно теории электролитической диссоциации все общие щелочные свойства растворов — мылкость на ощупь, изменение цвета индикаторов, взаимодействие с кислотами, ангидридами кислот, солями — обусловлены присутствием гидроксид-ионов OH − .

Правда, имеются электролиты, при диссоциации которых одновременно образуются и ионы водорода, и гидроксид-ионы. Эти электролиты называются амфотерными или амфолитами. К ним относятся вода, гидроксиды цинка, алюминия, хрома и ряд других веществ. Вода, например, в незначительных количествах диссоциирует на ионы H + и OH − :

Следовательно, у нее в равной мере выражены и кислотные свойства, обусловленные наличием ионов водорода H + , и щелочные свойства, обусловленные наличием ионов OH − .

Диссоциацию гидроксида цинка Zn(OH)2 можно выразить уравнением:

Солями называются электролиты, при диссоциации которых образуются катионы металлов (сюда же относят и катион аммония NH4 + ) и анионы кислотных остатков. Например:

Так диссоциируют средние соли. Кислые же и основные соли, как уже отмечалось, диссоциируют ступенчато.

Поскольку все реакции в водных растворах электролитов представляют собой взаимодействие ионов, уравнения этих реакций можно составлять в ионной форме.

Значение теории электролитической диссоциации состоит в том, что она объяснила многочисленные явления и процессы, протекающие в водных растворах электролитов. Однако она не объясняет процессов, протекающих в неводных растворах. Так, если хлорид аммония в водном растворе ведет себя как соль (диссоциирует на ионы NH4 + Cl − ), то в жидком аммиаке проявляет свойства кислоты — растворяет металлы с выделением водорода. Как основание ведет себя азотная кислота, растворенная в жидком фтороводороде или в безводной серной кислоте.

Все эти факторы противоречат теории электролитической диссоциации. Их объясняет протолитическая теория кислот и оснований.

Сам термин «диссоциация» означает распад молекул на несколько более простых частиц. В химии помимо электролитической диссоциации различают термическую диссоциацию. Это обратимая реакция, происходящая при повышении температуры. Например, термическая диссоциация водяного пара:

молекул иода: I2 ↔ 2I

Равновесие термической диссоциации подчиняется закону действия масс.

Источники:
  • http://lektsii.org/12-7163.html
  • http://studfiles.net/preview/2180772/page:8/
  • http://www.teslalab.ru/articles/chemistry/35/
  • http://lektsii.org/12-7163.html
  • http://studopedia.ru/4_120003_ekvivalentnaya-normalnaya-kontsentratsiya.html
  • http://studopedia.su/9_81279_osnovaniya-kisloti-i-soli-v-teorii-elektroliticheskoy-dissotsiatsii.html
  • http://yunc.org/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BB%D0%B8%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%B4%D0%B8%D1%81%D1%81%D0%BE%D1%86%D0%B8%D0%B0%D1%86%D0%B8%D1%8F