Меню Рубрики

Что такое вещество с точки зрения физики

Изучая в рамках школьного или вузовского курса различные направления науки, несложно заметить, что они очень часто оперируют понятием вещества.

Но что такое вещество в физике и химии, в чём разница между определениями этих двух наук? Постараемся рассмотреть подробнее.

Классическая физика учит, что материя, из которой состоит Вселенная, находится в одном из двух основных состояний – в виде вещества и в виде поля. Веществом в физике называют материю, состоящую из элементарных частиц (по большей части это нейтроны, протоны и электроны), образующих атомы и молекулы, которые обладают массой покоя, отличной от нуля.

Вещество представлено различными физическими телами, обладающими рядом параметров, которые поддаются объективным измерениям. В любой момент можно измерить удельный вес и плотность исследуемого вещества, его упругость и твёрдость, электропроводность и магнитные свойства, прозрачность, теплоёмкость и т.д.

В зависимости от вида вещества и внешних условий, эти параметры могут изменяться в достаточно широких пределах. В то же время каждому типу вещества свойственен определённый набор постоянных характеристик, отражающих его качественные показатели.

Агрегатные состояния веществ

Все существующие во Вселенной вещества могут пребывать в одном из агрегатных состояний:

— в виде жидкости;

— в твёрдом состоянии;

При этом многим веществам свойственны переходные, или пограничные состояния. Наиболее распространёнными из них являются:

— аморфное, или стеклообразное;

— высокоэластичное.

Кроме того, некоторые вещества при особых внешних условиях могут переходить в состояния сверхтекучести и сверхпроводимости.

Что такое вещество в химии?

Химическая наука изучает вещества, состоящие из атомов, а также законы, по которым происходят преобразования веществ, называемые химическими реакциями. Вещества могут пребывать в виде атомов, молекул, ионов, радикалов, а также их смесей.

Химия делит вещества на простые, т.е. те, которые состоят из атомов одного вида, и сложные, состоящие из разных видов атомов. Простые вещества называют химическими элементами: из них, как из кирпичиков, состоят все вещества в мире.

В ходе химической реакции вещества взаимодействуют друг с другом, обмениваясь атомами и атомными группами, в результате чего образуются новые вещества. В то же время химия не рассматривает процессы, при которых происходят изменения в атомарной структуре: количество и виды атомов, участвующих в реакции, всегда остаются неизменными.

Все простые вещества сведены в так называемую периодическую таблицу элементов, которая была создана русским учёным Д.И. Менделеевым. В этой таблице простые вещества расставлены в порядке возрастания их атомных масс и сгруппированы по свойствам, что существенно упрощает их дальнейшее изучение.

Органические и неорганические вещества

В современной химии принято разделение всех веществ на две основные группы: неорганические и органические. К неорганическим веществам относятся:

оксиды – соединения химических элементов с кислородом;

кислоты – соединения, состоящие из атомов водорода и так называемого кислотного остатка;

соли – вещества, состоящие из атомов металла и кислотного остатка;

основания, или щёлочи – соединения, состоящие из металла и гидроксильной группы или нескольких групп;

амфотерные гидроксиды – вещества, обладающие свойствами оснований и кислот.

Существуют и более сложные соединения неорганических элементов. Всего насчитывается до полумиллиона разновидностей неорганических веществ.

Органические вещества – это соединения углерода с гидрогеном и другими химическими элементами. По большей части они представляют собой сложные молекулы, состоящие из большого количества атомов. Существует множество разновидностей органических веществ, в зависимости от их состава и молекулярного строения. Всего на текущий момент науке известно более 20 миллионов разновидностей органических веществ.

Что такое вещество?

Наш мир материален, это значит, что он состоит из материи. А материя существует в двух видах: как обладающее массой вещество и поле, которое массы не имеет.

Каждое вещество имеет набор особых свойств, например плотность, температуры плавления и кипения, наличие или отсутствие кристаллической структуры. Этими свойствами занимается физика, хотя для химии их знание просто необходимо. Химические свойства вещества — это способность взаимодействовать с другими веществами, превращаться в них. Для химических свойств характерно взаимодействие частиц между собой (в том числе с превращением в другие частицы) без изменения строения атомов, входящих в эти частицы.

Например, физика изучает, как вода меняет свои агрегатные состояния. Известно три состояния вещества — твердое, жидкое, газообразное. Есть и четвертое — особым образом разреженный газ — плазма. Вода в твердом состоянии — лед, в жидком — жидкость, в газообразном — пар. С точки зрения химии вода состоит из молекул, которые могут разделяться (диссоциировать) на ионы и взаимодействовать с другими веществами, производя третьи.

ВИДЫ ВЕЩЕСТВ

Вещества бывают органическими и неорганическими, простыми и сложными. Простые вещества состоят из одного вида атомов, сложные — из двух и более. Среди простых веществ различают металлы и неметаллы. Также вещества бывают неорганическими и органическими. Среди неорганических выделяются такие, как оксиды, основания, кислоты и соли. Органические вещества содержат углерод, водород, кислород, соединенные особым образом, а часто еще азот и фосфор. Существуют также органические кислоты.

Что такое вещество с точки зрения физики

Из-за блокировщика рекламы некоторые функции на сайте могут работать некорректно! Пожалуйста, отключите блокировщик рекламы на этом сайте.

Вам нужны консультации по Химии по Skype?
Если да, подайте заявку. Стоимость договорная.
Чтобы закрыть это окно, нажмите «Нет».

Основы химии

Данный курс предназначен для тех, кто желает более подробно познакомиться с такой замечательной наукой, как химия и углубить свои знания.

Мы рекомендуем его учителям химии средней школы, репетиторам химии и ученикам профильных классов.

Курс состоит из разделов, каждый из которых посвящён определённой теме. Разделы рекомендуется изучать по порядку. Пока не все темы Вы сможете найти здесь, так как курс только начал пополняться материалами. В разделах особое внимание уделяется спорным теоретическим и методологическим моментам, а также распространённым заблуждениям некоторых авторов.

© Копирование материалов курса разрешено исключительно с указанием ссылки на соответствующий раздел и указанием автора.

С уважением, Кузьмин Владимир Александрович.

Представления о материи с точки зрения физики

Физические картины мира

Физика, как и все естествознание, развивалась по пути научных революций. Ключевое понятие в физической картине мира – «материя». Именно смена представлений о материи вызывала смену всей физической картины мира. В истории физики такие смены происходили 2 раза, соответственно, существовали 3 физические картины мира.

I. Механистическая картина мира (сложилась в XVI – XVII веках, в основе – атомизм древнегреческих философов и механика Ньютона).

Основные черты МКМ:

Ø Материясостоит из атомов, связанных между собой (корпускулярная модель реальности).

Ø Движение тел происходит в соответствии с тремя законами механики Ньютона.

Ø Взаимодействие тел происходит мгновенно на любом расстоянии – по принципу дальнодействия (т.е. тела взаимодействуют мгновенно на любом расстоянии и без каких-либо материальных посредников).

Ø Пространство и время абсолютны – они существуют независимо от материи (пространство – это гигантский «черный ящик», вмещающий все тела в мире, но если бы эти тела вдруг исчезли, пространство все равно бы осталось. Так же, в образе «текущей реки», представлялось и время, то же существующее независимо от материи).

Ø Любые события предопределяются законами механики. (все события предсказуемы, случайность исключена).

Ø Присутствие человека в мире ничего не меняет. (если человек даже исчезнет с лица Земли – мир продолжит существовать как ни в чем не бывало).

На основе МКМ в 18-19 в. была разработана земная, небесная и молекулярная механика, т.е. макро-, мега- и микромир подчинялись общим законам → МКМ считалась универсальной, способной объяснить любые процессы. МКМ господствовала в физике до середины 19 в.

Однако к середине 19 в. накопились эмпирические данные, которые МКМ объяснить не могла (оптические и электромагнитные явления).

Например, попытка объяснения природы света с точки зрения механики — корпускулярная теория света, предложенная Ньютоном:

Свет – поток мельчайших частиц, которые излучают светящиеся тела. Эти частицы движутся в соответствии с законами механики и при попадании в глаз вызывают ощущение света.

Но эта теория не могла объяснить явления интерференции (наложение волн друг на друга) и дифракции (огибание волнами препятствий) света.

Тогда для их объяснения было введено понятие «светоносного эфира» (упругая среда, заполняющая все пространство).

Аналогично объяснялись электричество, магнетизм, тепловые явления – с помощью понятий «теплорода», «электрической» и «магнитной» жидкости и т.п.

Таким образом, опытные факты искусственно подгонялись под МКМ → физика нуждалась в смене представлений о материи, в смене физической картины мира.

II. Электромагнитная картина мира (сложилась в середине 19 века, в основе – электродинамика Фарадея и Максвелла).

Основные черты ЭМКМ:

Ø Материя состоит из электрически заряженных частиц вещества (атомы, молекулы – они непроницаемы), которые взаимодействуют друг с другом посредством электро-магнитного поля (проницаемо) (полевая, континуальная (непрерывная) модель реальности).

Ø Движение – распространение колебаний в поле; описывается законами электродинамики.

Ø Тела взаимодействуют по принципу близкодействия – взаимодействие передается полем от точки к точке непрерывно и с конечной скоростью.

Ø Пространство и время относительны – они несамостоятельны и зависимы от материи, т.к. они связаны с процессами, происходящими в поле (поле – абсолютно непрерывная материя → пустого пространства просто нет).

Ø Представление о человеке – не изменилось. Появление человека – это только каприз природы.

Новая картина мира объяснила большой круг явлений, непонятных с точки зрения МКМ; глубже показала материальное единство мира, т.к. электричество и магнетизм объяснялись на основе одних и тех же законов.

Однако с конца 19 в. обнаруживалось все больше противоречий, которые не могла объяснить и ЭМКМ – это открытия, опровергающие представление об атомах как о неделимых частицах:

· открытие электрона (Томсон, 1895);

· открытие ядра(Резерфорд);

· открытие радиоактивности – способности атомов одних элементов превращаться в атомы других элементов (Беккерель).

III. Квантово-полевая картина мира (возникла в начале ХХ века, в основе – квантовая механика Луи де Бройля, Шредингера, Гейзенберга и Борна)

Основные черты КПКМ:

Ø Изучение свойств открытых микрочастиц показало, что они проявляют не только свойства частицы, но и свойства волны (интерференция и дифракция электрона) → Материя обладает одновременно и корпускулярными, и волновыми свойствами (квантово-полевая модель реальности).

Ø Материя способна изменяться, т.к. основные свойства элементарных частиц – это их взаимозависимость и взаимопревращаемость.

Ø Движение – это только частный случай физического взаимодействия (известно 4 вида фундаментальных физических взаимодействий: гравитационное, электромагнитное, сильное и слабое – поговорим позже). Они осуществляются на основе принципа близкодействия – т.е. взаимодействия передаются соответствующими полями от точки к точке; скорость передачи конечна и не превышает Vсвета в вакууме (300 000 км/с).

Ø Пространство и времяотносительны, они зависят от материи и друг от друга и, согласно теории относительности, сливаются в едином четырехмерном пространственно-временном континууме (сплошная материальная среда, свойства которой изменяются в пространстве и во времени непрерывно).

Ø Изменились представления о человеке. Человек – это наблюдатель от которого зависит получаемая картина мира. Наш мир таков, каков он есть сейчас, только благодаря существованию человека. Появление человека – закономерный результат эволюции Вселенной.

КПКМ и сейчас находится в стадии становления, с каждым годом к ней добавляются новые элементы, гипотезы, теории и т.п.

Мы уже говорили о том, что ключевым понятием физики является «материя». Поэтому в обязательном порядке нужно поговорить о представлениях о материи с точки зрения физики, об основных физических законах, характеризующих материю.

Представления о материи с точки зрения физики

1. Законы сохранения физических величин.

Учеными выяснена важная особенность природы – симметрия (означает соразмерность).

Читайте также:  Для чего нужна лазерная коррекция зрения
Симметрия проявляется на всех уровнях строения материи: · в микромире (после взаимодействий элементарные частицы неразличимы); · в макромире – множество примеров: молекулы (зеркальная симметрия – изомеры) кристаллы (поворотная симметрия), живые организмы (радиальная; двусторонняя симметрия); · в мегамире (структура спиральных и эллиптических галактик, шарообразное строение звезд и планет). Известно и множество примеров нарушения симметрии: o при анатомической симметрии правого и левого полушарий у человека общеизвестна их функциональная асимметрия (право- и леворукость); o в состав живых организмов входят только «правовращающие» сахара и «левовращающие» АК; o во Вселенной нарушена симметрия между веществом и антивеществом (последнего намного меньше).

В начале 20 в. (1918 г.) немецким математиком Эммой Нетер была доказана теорема, согласно которой именно из свойства симметрии вытекают все законы сохранения. Что же такое – законы сохранения:

Законы сохранения физических величин – это утверждения, согласно которым численные значения некоторых величин не изменяются со временем в любых процессах.

Законы сохранения – самые важные, основополагающие утверждения современного естествознания, демонстрирующие единство материального мира. Они обязательно выполняются во всех процессах, происходящих без обмена веществом и энергией с окружающей средой.

З-н сохранения вещества и энергии – при любых физических взаимодействиях вещество и энергия не возникают и не исчезают, а только превращаются из формы в другую.

Переходы вещества: образование оксидов при горении веществ (масса увеличивается, т.к. добавляется масса О2) — особенно ярко проявляется в химии.

Переходы энергии: трение → теплота, электричество → магнетизм, механическое движение → электричество, тепло → электричество и т.д.

Теория относительности Эйнштейна связала массу и энергию уравнением Е=mc 2 : «масса тела есть мера содержащейся в нем энергии».

З-н сохранения импульса

Импульс– произведение массы на скорость (Р=mV). В замкнутой системе при любых взаимодействиях тел сумма их импульсов остается постоянной.

На этом принципе построена игра в бильярд.

Также на з-не сохранения импульса основана стрельба из огнестрельного оружия. Посланная вперед пуля и стрелок имеют сумму импульсов, равную нулю. Для выполнения з-на сохранения импульса маленькая масса пули требует большой скорости. Стрелок же из-за своей большой массы (по сравнению с пулей) получает ничтожную скорость в виде отдачи ружья.

Понятие о единстве материи с точки зрения современной физики

Введение

Исходной категорией в философском осмыслении мира является категория «бытия». В этой категории фиксируется убеждение человека в существовании окружающего мира и самого человека с его сознанием. Отдельные вещи, процессы, явления возникают и исчезают, а мир в целом существует и сохраняется. Констатация бытия является исходной предпосылкой дальнейших рассуждений о мире.

Категория бытия, выступая предельно общей абстракцией, объединяет по признаку существования самые различные явления, предметы и процессы: природные объекты, их свойства, связи и отношения, человеческие коллективы и отдельных людей, социальные институты, состояния человеческого сознания и т.д. Все существующее – это и есть мир, к которому мы принадлежим.

Из всех многообразных форм бытия в центре внимания философов всегда находились две: материальная и идеальная. И тому есть простое объяснение. Для философов самый интересный предмет исследования – это человек, строй и смысл его жизни. А вопрос «что такое человек?» подразумевает выделение специфики человеческого существования, то есть таких качеств, которые отличают человека от всего остального мира. И первое, самоочевидное такое качество – это, конечно, наш разум, сознание. Здесь и лежат истоки знаменитой философской антитезы материального и идеального. Философы показывают специфику человеческого бытия через противопоставление идеального (разума, сознания) материальному (всему остальному). Поэтому категории «материя» и «сознание» неизбежно выдвигаются на первый план, образуют своеобразную ось философских размышлений независимо от того, признается ли этот факт открыто или нет.

Выделяя главные сферы бытия (природу, общество, сознание), мы неявно полагаем, что многообразие явлений, событий, процессов, включенных в эти сферы, объединено некоторой общей основой. Вместе с тем возникает вопрос: имеется ли нечто объединяющее сами эти сферы, можно ли говорить о единстве всего бесконечного многообразия мира? Идея такого единства приводит к представлению об общей основе всего существующего, для обозначения которой в философии была выработана категория «материя».

Конкретизация понятия «бытие» осуществляется, в первую очередь, в понятии «материя». Ясно, что проблемы материи, в том числе и ее понятие, разрабатывались прежде всего философами-материалистами от древних до современных. Наиболее полная и глубокая разработка данных проблем содержится в трудах современных материалистов. В материалистической философии «материя» выступает как наиболее общая, фундаментальная категория, в которой фиксируется материальное единство мира; разнообразные формы бытия рассматриваются как порожденные материей в ходе ее движения и развития.

Понятие «материя», по-видимому, родилось из стремления выявить изначальное единство всего существующего на свете, свести все многообразие вещей и явлений к некой общей, исходной основе, то есть у всех без исключения предметов и явлений есть какая-то единая основа, некий первичный «материал», из чего все «состоит».

На роль такой первоосновы мира у античных греков последовательно претендовали вода (Фалес), воздух (Анаксимен), огонь (Гераклит), а то и все эти стихии разом (Эмпедокл). Не менее значимы были попытки приписать искомому первоначалу идеальный характер («эйдосы» у Платона, «нус», то есть ум, у Анаксагора). Одной из самых удачных концепций в этом плане стала атомистическая гипотеза Демокрита, основная идея которой входит и в современное мировоззрение.

Чуть позже для обозначения предполагаемой изначальной общности всего существующего стали применять понятие «субстанция» (от латинского substantia – то, что лежит в основе). Категория субстанции в философии обозначает исходное внутреннее единство разнообразных вещей, процессов и явлений, их умопостигаемую сущность. Конкретные вещи возникают и исчезают, их существование обусловлено другими вещами. Базовая же их основа – субстанция – несотворима и неуничтожима, она ничем другим, кроме самой себя, в принципе не может быть обусловлена.

Весьма важную попытку дать определение материи сделал французский материалист XVIII века Гольбах, который в работе «Система природы» писал, что «по отношению к нам материя вообще есть все то, что воздействует каким-нибудь образом на наши чувства».

Здесь мы видим стремление выделить то общее в различных формах материи, а именно: что они вызывают у нас ощущения. В этом определении Гольбах уже отвлекается от конкретных свойств предметов и дает представление о материи как абстракции. Вместе с тем определение Гольбаха было ограниченным. Оно не раскрывало до конца сущности всего того , что воздействует на наши органы чувств, оно не раскрывало специфики того, что не может воздействовать на наши чувства. Эта незавершенность предложенного Гольбахом определения материи создавала возможности как для материалистической, так и идеалистической ее трактовки.

К концу прошлого века естествознание, и в частности физика, достигло достаточно высокого уровня своего развития. Были открыты общие и, казалось, незыблемые принципы строения мира. Была открыта клетка, сформулирован закон сохранения и превращения энергии, установлен Дарвиным эволюционный путь развития живой природы, Менделеевым создана периодическая система элементов. Основой бытия всех людей, предметов признавались атомы — мельчайшие, с точки зрения того времени, неделимые частицы вещества. Понятие материи отождествлялось, таким образом, с понятием вещества, масса характеризовалась как мера количества вещества или мера количества материи. Материя рассматривалась вне связи с пространством и временем. Благодаря работам Фарадея, а затем Максвелла, были установлены законы движения электромагнитного поля и электромагнитная природа света. При этом распространение электромагнитных волн связывалось с механическими колебаниями гипотетической среды — эфира. Физики с удовлетворением отмечали: наконец-то, картина мира создана, окружающие нас явления укладываются в предначертанные им рамки.

Оценивая в целом представления классической физики XIX в. о строении и свойствах материи, отметим, что они страдали теми же недостатками, что и учения древних. Точка зрения на материю как на первичную, неизменную субстанцию и отождествление ее при этом с веществом содержали в себе предпосылки возможности критических ситуаций в физике. И это не замедлило сказаться.

На благополучном, казалось, фоне «стройной теории» вдруг последовала целая серия необъяснимых в рамках классической физики научных открытий. В 1896 г. были открыты рентгеновские лучи. В 1896 г. Беккерель случайно обнаружил радиоактивность урана, в этом же году супруги Кюри открывают радий. Томсоном в 1897 г. открыт электрон, а в 1901 г. Кауфманом показана изменчивость массы электрона при его движении в электромагнитном поле. Наш соотечественник Лебедев обнаруживает световое давление, тем самым окончательно утверждая материальность электромагнитного поля. В начале ХХ в. Планком, Лоренцом, Пуанкаре и др. закладываются основы квантовой механики, и, наконец, в 1905 г. Эйнштейном создается специальная теория относительности.

Многие физики того периода, мыслящие метафизически, не смогли понять сути этих открытий. Вера в незыблемость основных принципов классической физики привела их к скатыванию с материалистических позиций в сторону идеализма. Логика их рассуждений была такова. Атом — мельчайшая частица вещества. Атом обладает свойствами неделимости, непроницаемости, постоянства массы, нейтральности в отношении заряда. И вдруг оказывается, что атом распадается на какие-то частицы, которые по своим свойствам противоположны свойствам атома. Так, например, электрон имеет изменчивую массу, заряд и т.д. Это коренное отличие свойств электрона и атома привело к мысли, что электрон нематериален. А поскольку с понятием атома, вещества отождествлялось понятие материи, а атом исчезал, то отсюда следовал вывод: «материя исчезла». С другой стороны, изменчивость массы электрона, под которой понималось количество вещества, стала трактоваться как превращение материи в «ничто». Таким образом, рушился один из главнейших принципов материализма — принцип неуничтожимости и несотворимости материи.

Наиболее удачное определение материи было в ту пору сформулировано В.И. Лениным. Анализируя данную ситуацию, Ленин по-новому подошел к определению понятия материи:

«Материя есть философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от них.»

Смысл данного определения сводится к тому, что материя есть объективная реальность, данная нам в ощущениях. Несмотря на кажущуюся простоту, это определение достаточно необычно. Своеобразие его заключается в том, что оно дается диалектически, то есть – через противоположность.

Понимание материи в этом случае не привязывается ни к какому конкретному ее виду или состоянию (веществу, полю, плазме, вакууму). И поэтому, сколько бы ни было впредь открыто таких видов материи, ее общее определение не должно быть поколеблено. Уровень общности ленинского определения материи – предельный.

Понятие о единстве материи с точки зрения современной физики

В основе современных научных представлений о строении материи лежит идея ее сложной системной организации. Любой объект материального мира может быть рассмотрен в качестве системы, то есть особой целостности, которая характеризуется наличием элементов и связей между ними.

Например, макротело можно рассматривать как определенную организацию молекул. Любая молекула тоже является системой, которая состоит из атомов и определенной связи между ними: ядра атомов, входящие в состав молекулы как одноименные (положительные) заряды, подчиняются силам электростатического отталкивания, но вокруг них образуются общие электронные оболочки, которые как бы стягивают эти ядра, не давая им разлететься в пространстве. Атом также представляет собой системное целое — состоит из ядра и электронных оболочек, расположенных на определенных расстояниях от ядра. Ядро каждого атома, в свою очередь, имеет внутреннюю структуру. В простейшем случае — у атома водорода — ядро состоит из одной частицы — протона. Ядра более сложных атомов образованы путем взаимодействия протонов и нейтронов, которые внутри ядра постоянно превращаются друг в друга и образуют особые целостности — нуклоны, частицы, которые часть времени пребывают в протонном, а часть — в нейтронном состоянии. Наконец, и протон, и нейтрон — сложные образования. В них можно выделить специфические элементы — кварки, которые взаимодействуют, обмениваясь другими частицами — глюонами (от лат. gluten — клей), как бы «склеивающими» кварки. Протоны, нейтроны и другие частицы, которые физика объединяет в группу адронов (тяжелых частиц), существуют благодаря кварк-глюонным взаимодействиям.

Читайте также:  Ухудшается ли зрение от чтения в полумраке

Изучая живую природу, мы также сталкиваемся с системной организацией материи. Сложными системами являются как клетка, так и построенные из клеток организмы; целостную систему представляет собой вся сфера жизни на Земле — биосфера, существующая благодаря взаимодействию своих частей: микроорганизмов, растительного, животного мира, человека с его преобразующей деятельностью. Биосферу можно рассматривать как целостный объект (как и атом, молекулу и т.д.), где есть определенные элементы и связи между ними.

Материальные системы всегда взаимодействуют с внешним окружением. Некоторые свойства, отношения и связи элементов в этом взаимодействии меняются, но основные связи могут сохраняться, и это является условием существования системы как целого. Сохраняющиеся связи выступают как инвариант, то есть устойчивые, не изменяющиеся при вариациях системы. Эти устойчивые связи и отношения между элементами системы образуют ее структуру. Иными словами, система — это элементы и их структура.

Любой объект материального мира уникален и нетождествен другому. Но при всей уникальности и непохожести объектов определенные их группы в своем строении обладают общими признаками. Например, существует очень большое разнообразие атомов, но все они устроены по одному типу — в атоме должно быть ядро и электронная оболочка. Огромное многообразие молекул — от простейшей молекулы водорода до сложных молекул белков — имеет общие структурные признаки: ядра атомов, образующих молекулу, стянуты общими электронными оболочками. Можно обнаружить общие признаки строения у различных макротел, у клеток, из которых построены живые организмы, и т.д. Наличие общих признаков организации позволяет объединить различные объекты в классы материальных систем. Эти классы часто называют уровнями организации материи или видами материи.

Согласно современным научным взглядам, глубинные структуры материального мира представлены объектами элементарного уровня. Это прежде всего элементарные частицы. За исключением электрона, исследования которого начались еще в XIX веке, все остальные были обнаружены в XX столетии. Их свойства оказались весьма необычными, резко отличающимися от свойств макротел, с которыми мы сталкиваемся в повседневном опыте. Все элементарные частицы обладают одновременно и корпускулярными, и волновыми свойствами, а закономерности их движения, изучаемые квантовой физикой, отличаются от закономерностей движения макротел, описанных в классической физике.

До открытия элементарных частиц и их взаимодействий наука разграничивала два вида материи — вещество и поле.

Еще в конце XIX-начале XX века поле определяли как непрерывную материальную среду, а вещество — как прерывное, состоящее из дискретных частиц. Однако развитие квантовой физики выявило относительность разграничительных линий между веществом и полем. Только на макроуровне, когда можно не принимать во внимание квантовые свойства полей, их можно считать непрерывными средами. Но на микроуровне поля предстают как состоящие из квантов, которые можно рассматривать в качестве частиц, обладающих одновременно и корпускулярными, и волновыми характеристиками. Например, электромагнитное поле можно представить как систему фотонов, а гравитационное поле — как систему гравитонов — гипотетических частиц, которые предсказывает квантовая теория. В то же время и частицы вещества — электроны и позитроны, мезоны и другие — уже в целом ряде задач физика рассматривает как кванты соответствующих полей (электронно-позитронного, мезонного и т.п.).

Элементарные частицы участвуют в четырех типах взаимодействия — сильном, слабом, электромагнитном и гравитационном. Только два последних типа взаимодействий проявляют себя на любых сколь угодно больших расстояниях, и поэтому им подчинены процессы не только микромира, но и макротел, планет, звезд и галактик (макро- и мегамир). Что же касается сильных и слабых взаимодействий, то они характерны только для процессов микромира. Одним из самых удивительных открытий последней трети XX века было обнаружение того, что электромагнитные и слабые взаимодействия представляют собой стороны, различные проявления единой сущности — электрослабого взаимодействия.

Элементарные частицы можно классифицировать по типам взаимодействия. Адроны (тяжелые частицы — протоны, нейтроны, мезоны и др.) участвуют во всех взаимодействиях. Лептоны (от греч. leptos — легкий; например, электрон, нейтрино и др.) не участвуют в сильных взаимодействиях, а только в электрослабых и гравитационных. Гипотетические гравитоны выступают носителями только гравитационных сил. В сильных взаимодействиях многие адроны неразличимы, они как бы на одно лицо. Например, неотличимы друг от друга нуклоны — нейтроны и протоны, все П-мезоны (Пи-мезоны) выступают как одна частица. Но когда включаются электромагнитные силы, то нуклоны расщепляются на две составляющие, а П-мезоны на три (П°, П+, П-). Подобное расщепление позволяет рассматривать частицы как проявления некоторой глубинной структуры. Поиск таких структур составляет главную цель современной физики. На этом пути наука стремится обнаружить те глубинные свойства и состояния материи, которые в конечном счете определяют эволюцию Вселенной, особенности взаимодействия и развития ее объектов.

Первым большим успехом на этом пути было открытие кварковой структуры адронов. Кварки оказались весьма экзотическими объектами не только потому, что у них дробный электрический заряд (1/3 или 2/3 от заряда электрона, принимаемого за 1). Само взаимодействие кварков, осуществляемое благодаря обмену глюонами, таково, что увеличение расстояния между кварками внутри адронов приводит к резкому возрастанию связывающих их сил. Поэтому в отличие от ранее известных элементарных частиц (протонов, нейтронов, электронов и др.) кварки пока не обнаружены в свободном состоянии. Они оказываются как бы запертыми внутри адронов. Но в эксперименте их можно прозондировать: при столкновении частиц больших энергий внутри адронов обнаруживается несколько своеобразных центров, на которых происходит рассеяние частиц и которые физика отождествляет с кварками.

Кварки и лептоны выступают в качестве базисных объектов в системе элементарных частиц. Они являются главным строительным материалом для вещества нашего мира, поскольку ядра атомов существуют благодаря взаимодействию кварков, а формирование электронных оболочек вокруг ядра приводит к образованию атомов.

Современная физика пока еще не создала единой теории элементарных частиц, на пути к ней сделаны лишь первые, но существенные шаги. Выявление общих глубинных структур частиц, участвующих в сильных взаимодеиствиях, и установление единства слабого и электромагнитного взаимодействий стимулировали разработку идеи объединения сильных, электрослабых и гравитационных взаимодействий в рамках единой теории. Иными словами, речь уже идет об исследовании субэлементарного уровня организации материи, о выяснении единой природы всех элементарных частиц. По-видимому, именно в закономерностях этого уровня скрыты основные тайны нашей Вселенной, предопределившие особенности ее эволюции. Вообще для современной науки характерно, что чем глубже она проникает в микромир, тем больше возможностей открывается для понимания крупномасштабной структуры Вселенной. Последняя не является вечной и неизменной, а представляет собой результат развития материи, своеобразную реализацию тех потенциальных возможностей, которые были заложены в глубинах микромира.

Элементарный уровень организации материи включает наряду с элементарными частицами еще и такой необычный физический объект, как вакуум. Физический вакуум — не пустота, а особое состояние материи. В вакуум погружены все частицы и все физические тела. В нем постоянно происходят сложные процессы, связанные с непрерывным появлением и исчезновением так называемых «виртуальных частиц».

Виртуальные частицы — это своеобразные потенции соответствующих типов элементарных частиц, их «вакуумные корни», частицы, готовые к рождению, но не рождающиеся, возникающие и исчезающие в очень короткие промежутки времени. При определенных условиях они могут вырваться из вакуума, превращаясь в «нормальные» элементарные частицы, которые живут относительно независимо от породившей их среды и могут взаимодействовать с ней.

Первые шаги по пути исследования субэлементарного уровня материи привели к принципиально новым идеям о качественном многообразии вакуума. Выяснилось, что физический вакуум способен скачком перестраивать свою структуру. Такие переходы из одного состояния к другому, связанные с резким изменением характеристик системы, в физике называют фазовыми (известным их примером служат переходы воды в пар и лед). Физический вакуум тоже оказался способным к фазовым скачкам.

Эти новые идеи современной физики микромира послужили опорой необычных представлений о развитии нашей астрономической Вселенной, о ее возникновении путем взрыва, связанного с массовым рождением элементарных частиц в результате одного из фазовых переходов вакуума. Взаимодействие объектов субэлементарного уровня и возникающих на их основе элементарных частиц служит фундаментом для образования более сложных материальных систем. Из элементарных частиц строятся атомы, которые являются качественно специфическим видом материи.

Современная наука допускает возможность возникновения и сосуществования множества миров, подобных нашей Метагалактике и называемых внеметагалактаческими объектами.

Их сложные взаимоотношения образуют многоярусную Большую Вселенную — материальный мир с бесконечным разнообразием форм и видов материи. Причем не во всех этих мирах возможно то многообразие видов материи, которое возникает в истории нашей Метагалактики.

Заключение

Итак, подводя итог сказанному, необходимо особо подчеркнуть, что материя представляет собой объективную реальность, существующую вне и независимо от человеческого сознания и отражаемую им, что она находится в постоянном изменении, движении, переходит из одних относительно устойчивых материальных образований (качественных состояний) в другие, которые, будучи конечными, возникающими при определенных условиях и неизбежно исчезающими в следствии происходящих в них изменений, являются звеньями единого, бесконечного в пространстве и времени мирового процесса.

В данном реферате мы рассмотрели понятия материя, её основные свойства и строение. Ключевым разделом реферата является понятие о единстве материи с точки зрения современной физики – здесь мы рассмотрели современные теории и исследования.

Литература

Афанасьев В.Г. Основы философских знаний. М., 1987.

Кандыбо Г. В., Страшников В. М. Материя, движение, техника. — Минск, 1977.

Корухов В.В., Шарыпов О.В. Об онтологическом аспекте бесконечного // Философия науки. — 1998. — № 1 (2). — С. 27-51

Ахундов М. Пространство и время в физическом познании. — М., 1982 г

| следующая лекция ==>
Формы существования информации | Коррекция девиантного поведения

Дата добавления: 2016-10-30 ; просмотров: 581 | Нарушение авторских прав

Что такое вещество с точки зрения физики

Материя (философия) — В Викисловаре есть статья «материя» У этого термина существуют и другие значения, см. Материя. Материя  … Википедия

Материя — (от лат. māteria «вещество»): В Викисловаре есть статья «материя» Материя (физика) фундаментальное физическое понятие. Материя (философия) философская категория для обозначения объективной реальности. то же, что … Википедия

физика — ▲ наука ↑ относительно, основа, материя физика наука об основах строении материи. механика. статика. кинематика. динамика. магнитогидродинамика. термодинамика. кинетика. электрохимия. физическая химия. кристаллография. металлофизика.… … Идеографический словарь русского языка

МАТЕРИЯ — одно из наиболее многозначных филос. понятий, которому придается один (или некоторые) из следующих смыслов: 1) то, определяющими характеристиками чего являются протяженность, место в пространстве, масса, вес, движение, инерция, сопротивление,… … Философская энциклопедия

МАТЕРИЯ — МАТЕРИЯ. Термин М. употребляется для обозначения двух понятий: М. как категории философской и М. как категории физики и естественных наук. М. как философская категория. «Материя есть философская категория для обозначения объективной… … Большая медицинская энциклопедия

МАТЕРИЯ И ДВИЖЕНИЕ — философские категории, являющиеся мировоззренческими основаниями науки в рамках материалистнч. философских учений. С точки зрения материалистич. диалектики, материальное единство мира, представляющего собой движущуюся материю, служит философским… … Физическая энциклопедия

ФИЗИКА — ФИЗИКА, наука, изучающая совместно с химией общие законы превращения энергии и материи. В основе обеих наук лежат два основных закона естествознания закон сохранения массы (закон Ломоносова, Лавуазье) и закон сохранения энергии (Р. Майер, Джауль… … Большая медицинская энциклопедия

Материя — Материя ♦ Matière Не следует смешивать научное понятие материи, относящееся к физике и развивающееся вместе с ней, с философским понятием (категорией) материи, которое также может эволюционировать в зависимости от появления тех или иных… … Философский словарь Спонвиля

Читайте также:  Ляпать уверенно тогда это называется точкой зрения

ФИЗИКА — (греч. τὰ φυσικά – наука о природе, от φύσις – природа) – комплекс науч. дисциплин, изучающих общие свойства структуры, взаимодействия и движения материи. В соответствии с этими задачами совр. Ф. весьма условно можно подразделить на три больших… … Философская энциклопедия

Физика — Физика ♦ Physique Все, что относится к природе (от греческого physis), в частности – наука, изучающая природу (ta physika). Если природа – все, как я полагаю, значит, физика призвана вместить в себя все прочие науки. Впрочем, это… … Философский словарь Спонвиля

Физические тела — это что такое? Физические тела: примеры, свойства

В сегодняшней статье порассуждаем о том, что такое физическое тело. Без сомнения, данный термин уже не раз встречался вам за годы школьной учебы. С понятиями «физическое тело», «вещество», «явление» мы впервые сталкиваемся на уроках природоведения. Они являются предметом изучения большинства разделов специальной науки — физики.

Согласно определению, понятие «физическое тело» обозначает определенный материальный объект, обладающий формой и явно выраженной внешней границей, которая отделяет его от внешней среды и прочих тел. Кроме того, физическому телу присущи такие характеристики, как масса и объем. Данные параметры являются базовыми. Но кроме них имеются и другие. Речь идет о прозрачности, плотности, упругости, твердости и т. п.

Физические тела: примеры

Говоря упрощенно, любой из окружающих предметов мы можем назвать физическим телом. Самые привычные их примеры — книга, стол, машина, мяч, чашка. Простым телом физика называет то, чья геометрическая форма несложна. Составные физические тела — это те, что существуют в виде комбинаций скрепленных между собой простых тел. Например, очень условно человеческую фигуру можно представить в виде совокупности цилиндров и шаров.

Материал, из которого состоит любое из тел, именуется веществом. При этом они могут содержать в своем составе как одно, так и ряд веществ. Приведем примеры. Физические тела — столовые приборы (вилки, ложки). Изготовлены они чаще всего из стали. Нож может послужить примером тела, состоящего из двух разных видов веществ — стального лезвия и деревянной рукоятки. А такое сложное изделие, как сотовый телефон, производится из гораздо большего количества «ингредиентов».

Какими бывают вещества

Они могут быть природными и созданными искусственно. В древние времена все необходимые предметы люди изготавливали из натуральных материалов (наконечники стрел — из камней, теплую одежду — из звериных шкур). С развитием технического прогресса появились вещества, созданные человеком. И в настоящее время таковых — большинство. Классическим примером физического тела искусственного происхождения может служить пластик. Каждый его вид создавался человеком с целью обеспечения нужных качеств того или иного предмета. Например, прозрачный пластик — для линз очков, нетоксичный пищевой — для посуды, прочный — для бампера автомобиля.

Любой предмет (от каменного топора до высокотехнологичного устройства) обладает рядом определенных качеств. Одно из свойств физических тел — это их способность притягиваться друг к другу в результате гравитационного взаимодействия. Измеряется оно при помощи физической величины, именуемой массой. По определению физиков, масса тел — это мера их гравитации. Она обозначается символом m.

Измерение массы

Данная физическая величина, как и любая другая, поддается измерению. Чтобы узнать, какова масса любого предмета, нужно сравнить его с эталоном. То есть с телом, масса которого принимается за единицу. Международной системой единиц (СИ) им считается килограмм. Такая «идеальная» единица массы существует в виде цилиндра, представляющего собой сплав иридия и платины. Данный международный образец хранится во Франции, а копии его имеются почти в каждой из стран.

Помимо килограмма используют понятие тонны, грамма или миллиграмма. Измеряют же массу тела взвешиванием. Это классический способ для повседневных расчетов. Но в современной физике есть и другие методы измерений, гораздо более современные и высокоточные. С их помощью определяют массу микрочастиц, а также гигантских объектов.

Другие свойства физических тел

Форма, масса и объем — важнейшие из характеристик. Но существуют и прочие свойства физических тел, каждое из которых важно в определённой ситуации. Например, предметы равного объема могут значительно различаться своей массой, то есть иметь разную плотность. Во многих ситуациях важны такие характеристики, как хрупкость, твердость, упругость или магнитные качества. Не следует забывать о теплопроводности, прозрачности, однородности, электропроводности и прочих многочисленных физических свойствах тел и веществ.

В большинстве случаев все подобные характеристики зависят от тех веществ или материалов, из которых предметы состоят. Например, резиновые, стеклянные и стальные шарики будут обладать абсолютно разными наборами физических качеств. Это имеет значение в ситуациях взаимодействий тел между собой, например изучении степени деформации их при сталкивании.

О принятых приближениях

Определенные разделы физики физическое тело рассматривают в качестве некой абстракции, обладающей идеальными характеристиками. Например, в механике тела представляются в виде материальных точек, не имеющих массы и прочих свойств. Данный раздел физики занимается движением таких условных точек, и для решения поставленных здесь задач подобные величины принципиального значения не имеют.

В научных расчетах часто применяется понятие абсолютно твердого тела. Таковым условно считается не подверженное никаким деформациям, с отсутствием смещения центра массы тело. Данная упрощенная модель позволяет теоретически воспроизводить ряд определенных процессов.

Раздел термодинамики в своих целях использует понятие абсолютно черного тела. А это что такое? Физическое тело (некий абстрактный предмет), способное поглощать любые попадающие на его поверхность излучения. При этом, если задача того требует, им могут излучаться электромагнитные волны. Если по условиям теоретических расчетов форма физических тел не принципиальна, по умолчанию считается, что она шарообразная.

Почему свойства тел так важны

Сама физика как таковая произошла от необходимости постичь законы, по которым ведут себя физические тела, а также механизмы существования разнообразных внешних явлений. К природным факторам можно отнести любые изменения в окружающей нас среде, не относящиеся к результатам человеческой деятельности. Многие из них люди используют себе на пользу, но другие могут быть опасными и даже катастрофическими.

Исследование поведения и самых разных свойств физических тел необходимо для людей в целях предсказания неблагоприятных факторов и предупреждения либо уменьшения наносимого ими вреда. Например, строительством волноломов люди привыкли бороться с негативными проявлениями морской стихии. Противостоять землетрясениям человечество научилось разработкой особых сейсмоустойчивых конструкций зданий. Несущие части автомобиля изготавливаются в особой, тщательно выверенной форме для уменьшения повреждений при авариях.

О структуре тел

Согласно другому определению, термин «физическое тело» подразумевает всё то, что можно признать реально существующим. Любое из них обязательно занимает часть пространства, а вещества, из которых они состоят, являются совокупностью молекул определённой структуры. Другие, более мелкие частицы его — атомы, но и каждый из них не является чем-либо неделимым и совершенно простым. Строение атома достаточно сложно. В его составе можно выделить положительно и отрицательно заряженные элементарные частицы — ионы.

Структура, согласно которой такие частицы выстраиваются в определённую систему, для твердых тел носит название кристаллической. Любой кристалл обладает определенной, строго фиксированной формой, что говорит об упорядоченном движении и взаимодействии его молекул и атомов. При изменении структуры кристаллов происходит нарушение физических свойств тела. От степени подвижности элементарных составляющих зависит его агрегатное состояние, которое может быть твердым, жидким или газообразным.

Для характеристики данных сложных явлений используется понятие коэффициентов сжатия или объемной упругости, которые являются взаимно обратными величинами.

Движение молекул

Состояние покоя ни атомам, ни молекулам твёрдых тел не присуще. Они находятся в постоянном движении, характер которого зависит от теплового состояния тела, и воздействий, которым оно в данный момент подвергается. Часть элементарных частиц — отрицательно заряженных ионов (именуемых электронами) движется с большей скоростью, чем имеющих положительный заряд.

С точки зрения агрегатного состояния, физические тела — это твердые предметы, жидкости или газы, что зависит от характера молекулярного движения. Вся совокупность твердых тел может быть поделена на кристаллические и аморфные. Движение частиц в кристалле признано полностью упорядоченным. В жидкостях молекулы двигаются по совершенно другому принципу. Они переходят из одной группы в другую, что можно образно представить подобно кочующим из одной небесной системы в другую кометам.

В любом из газообразных тел молекулы обладают гораздо более слабой связью, чем в жидких или твердых. Частицы там можно назвать отталкивающимися друг от друга. Упругость физических тел определяется сочетанием двух главных величин — коэффициента сдвига и коэффициента объемной упругости.

Текучесть тел

При всех значительных отличиях твердых и жидких физических тел между собой в свойствах их много общего. Часть из них, именуемых мягкими, занимают промежуточное агрегатное состояние между первыми и вторыми с присущими и тем, и другим физическими свойствами. Такое качество, как текучесть, можно обнаружить в твердом теле (пример — лед или сапожный вар). Присуще оно и металлам, в том числе достаточно твердым. Под давлением большинство из них способно течь подобно жидкости. Соединив и нагрев два твердых куска металла, возможно спаять их в единое целое. Причём процесс спаивания протекает при температуре гораздо более низкой, чем точка плавления каждого из них.

Данный процесс возможен при условии полного соприкосновения обеих частей. Именно таким способом получают различные металлические сплавы. Соответствующее свойство именуют диффузией.

О жидкостях и газах

По результатам многочисленных экспериментов ученые пришли к следующему выводу: твёрдые физические тела — это не какая-то обособленная группа. Различие между ними и жидкими состоит лишь в большем внутреннем трении. Переход веществ в разные состояния происходит в условиях определённой температуры.

Газы отличаются от жидкостей и твердых тел тем, что увеличения силы упругости даже при сильном изменении объёма в них не происходит. Различие между жидкостями и твердыми телами — в возникновении упругих сил в твердых телах при сдвиге, то есть изменении формы. Данного явления не наблюдается в жидкостях, которые могут принять любую из форм.

Кристаллические и аморфные

Как уже упоминалось, два возможных состояния твердых тел — аморфное и кристаллическое. К аморфным относятся тела, обладающие одинаковыми физическими свойствами по всем направлениям. Данное качество именуются изотропностью. В качестве примера можно привести затвердевшую смолу, изделия из янтаря, стекло. Их изотропность — результат беспорядочного расположения молекул и атомов в составе вещества.

В кристаллическом состоянии элементарные частицы расположены в строгом порядке и существуют в виде внутренней структуры, периодически повторяющейся в разных направлениях. Физические свойства таких тел отличаются, но в параллельных направлениях они совпадают. Такое свойство, присущее кристаллам, именуют анизотропностью. Ее причина — неодинаковая сила взаимодействия между молекулами и атомами в разных направлениях.

Моно- и поликристаллы

У монокристаллов внутренняя структура однородная и повторяется во всем объеме. Поликристаллы выглядят как множество хаотично сросшихся друг с другом небольших кристаллитов. Составляющие их частицы располагаются на строго определённом расстоянии друг от друга и в нужном порядке. Под кристаллической решеткой понимается совокупность узлов, то есть точек, служащих центрами молекул либо атомов. Металлы с кристаллической структурой служат материалом для каркасов мостов, зданий и других прочных конструкций. Именно потому свойства кристаллических тел тщательно изучаются в практических целях.

На реальные характеристики прочности оказывают негативное воздействие дефекты кристаллической решетки, как поверхностные, так и внутренние. Подобным свойствам твёрдых тел посвящен отдельный раздел физики, именуемый механикой твердого тела.

Источники:
  • http://sitekid.ru/himiya/chto_takoe_vecshestvo.html
  • http://dist-tutor.info/course/view.php?id=2530&item=11009
  • http://megapredmet.ru/1-59501.html
  • http://lektsii.org/8-23666.html
  • http://dic.academic.ru/dic.nsf/ruwiki/204008
  • http://fb.ru/article/322219/fizicheskie-tela---eto-chto-takoe-fizicheskie-tela-primeryi-svoystva