Меню Рубрики

Что такое вакуум с физической точки зрения

Очень часто к нам обращаются люди, которые хотят купить вакуумный насос, но слабо представляют, что такое вакуум.
Попытаемся разобраться, что же это такое.

По определению, вакуум – это пространство, свободное от вещества (от латинского слова «vacuus» — пустой).
Существует несколько определений вакуума: технический вакуум, физический вакуум, космический вакуум и т.д.
Мы будем рассматривать технический вакуум, который определяется как сильно разреженный газ.

Рассмотрим на примере, что такое вакуум и как его измеряют.
На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погоды, высоты на уровнем моря, но мы не будем принимать это во внимание, так как это не будет никак влиять на понимание понятия вакуум.
Итак, мы имеем давление на поверхности земли равное 1 атмосфере. Всё, что ниже 1 атмосферы (в закрытом сосуде), называется техническим вакуумом.

Возьмём некий сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнём откачивать из сосуда воздух, то в нём возникнет разряжение, которое и называется вакуумом.
Рассмотрим на примере: в левом сосуде 10 кружочков. Пусть это будет 1 атмосфера.
«откачаем» половину – получим 0,5 атм, оставим один – получим 0,1 атм.

Так как в сосуде всего одна атмосфера, то и максимально возможный вакуум мы можем получить (теоретически) ноль атмосфер.
«Теоретически» — т.к. выловить все молекулы воздуха из сосуда практически невозможно.
По этому, в любом сосуде, из которого откачали воздух (газ) всегда остается какое-то его минимальное количество. Это и называют «остаточным давлением», то есть давление, которое осталось в сосуде после откачки из него газов.
Существуют специальные насосы, которые могут достичь глубокого вакуума до 0,00001 Па, но всё равно не до нуля.
В обычной жизни редко когда требуется вакуум глубже 0,5 — 10 Па (0,00005-0,0001 атм).

Есть несколько вариантов измерения вакуума, которые зависят от выбора точки отсчёта:
1. За единицу принимается атмосферное давление. Всё, что ниже единицы – вакуум.
То есть шкала вакуумметра от 1 до 0 атм (1…0,9…0,8…0,7…..0,2…0,1….0).
2. За ноль принимается атмосферное давление. То есть вакуум – все отрицательные числа меньше 0 и до -1.
То есть шкала вакуумметра от 0 до -1 (0, -0,1…-0,2….,-0,9,…-1).
Также шкалы могут быть в кПа, mBar, но это всё аналогично шкалам в атмосферах.

На картинке показаны вакуумметры с различными шкалами, которые показывают одинаковый вакуум:

Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.

К нам почти каждый день обращаются люди, которые хотят получить вакуум -2, -3 атм и т.д.
И они очень удивляются когда узнают, что это невозможно (кстати, каждый второй из них говорит, что «вы сами ничего не знаете», «а у соседа так» и т.д. и.т.п.)

На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы).
Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.

Теперь несколько слов о том, как многие клиенты измеряют вакуум на выставке ООО «Насосы Ампика», у нас в офисе:
включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.

Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100.
После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).

В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.

Немного ликбеза: давление «P» – это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S.
По-простому – это сила, распределённая по площади поверхности.
Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S).
Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ – 25 мм (площадь поверхности 78,5 мм2).
Диаметр всасывающего отверстия у вакуумного насоса VE-2100 – 6 мм (площадь поверхности 18,8 мм2).
То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении).
Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс.
Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе).

Как посчитать силу прижима какой-либо детали к поверхности?
Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще.
Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.

Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН.
Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм.
1 атмосфера равна 1 кг/см2.
Площадь поверхности детали – 100 см2 (10см х10 см).
То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг.
Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг.
Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п.
Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.

Теперь пару слов о механических вакуумметрах.
Эти устройства показывают остаточное давление в пределах 0,05…1 атм.
То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр, например VG-64.

Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух.
Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым?
Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.

Вакуум у одноступенчатого насоса 20 Па, у двухступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее.
Но так ли это на самом деле?

1 атм = 100000 Па = 1 кг/см2.
Значит разница в прижиме плёнки при вакууме 20 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).

То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.

Как рассчитать за какое время вакуумный насос откачает вакуумную камеру?
В отличии от жидкостей, газы занимают весь имеющийся объем и если вакуумный насос откачал половину воздуха, находящегося в вакуумной камере, то оставшаяся часть воздуха вновь расширится и займет весь объем.
Ниже приведена формула для вычисления этого параметра.

t — время (в часах) необходимое для откачки вакуумного объема от давления p1 до давления p2
V — объем откачиваемой емкости, м3
S — быстрота действия вакуумного насоса, м3/час
p1 — начальное давление в откачиваемой емкости, мбар
p2 — конечное давление в откачиваемой емкости, мбар
ln — натуральный логарифм

F — поправочный коэффициент, зависит от конечного давления в емкости p2:
— p2 от 1000 до 250 мбар F=1
— p2 от 250 до 100 мбар F=1,5
— p2 от 100 до 50 мбар F=1,75
— p2 от 50 до 20 мбар F=2
— p2 от 20 до 5 мбар F=2,5
— p2 от 5 до 1 мбар F=3

В двух словах, это всё.
Надеемся, что кому-нибудь эта информация поможет сделать правильный выбор вакуумного оборудования и блеснуть знаниями за кружкой пива.

Что такое вакуум? На этот вопрос обычно отвечают: «пространство с разреженным воздухом» или «пространство внутри сосуда, из которого выкачан воздух». Но всякая ли степень разрежения это вакуум и находиться ли вакуум в какой-либо связи с атмосферным давлением?

Некоторые предпосылки к эмпирическому исследованию вакуума существовали ещё в античности. Древнегреческие механики создавали различные технические устройства, основанные на разрежении воздуха. Например, водяные насосы, действующие путём создания разрежения под поршнем, были известны ещё во времена Аристотеля. Эмпирическое изучение вакуума началось лишь в 17 веке, с концом Возрождения и началом научной революции Нового времени. К этому моменту уже давно было известно, что всасывающие насосы могут поднимать воду на высоту не более 10 метров.

На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум. При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега молекул газа. При этом молекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме. Высокий вакуум в микроскопических порах некоторых кристаллов достигается уже при атмосферном давлении, поскольку диаметр поры гораздо меньше длины свободного пробега молекулы.

Космическое пространство имеет очень низкую плотность и давление, и является ближайшим приближением физического вакуума. Но космический вакуум не является действительно совершенным, даже в межзвёздном пространстве есть несколько атомов водорода на кубический сантиметр.

Действительно, предположим, что в баллоне воздух разрежен в 10000 раз по сравнению с плотностью его при нормальном атмосферном давлении, т. е. давление внутри баллона равно 0,076 мм. рт. ст.

Будет ли в баллоне вакуум? И можем ли мы продолжать считать, что в баллоне вакуум, если этот баллон поднят на высоту 100 км над поверхностью земли, где давление воздуха составляет всего 0,007 мм. рт. ст. Ведь в этом случае плотность воздуха внутри баллона станет в 10 раз больше, чем снаружи! Тогда, где же будет вакуум – внутри баллона или снаружи?

Современная физика связывает вакуум не с величиной давления вне или внутри сосуда, а с длиной свободного пробега молекул газа внутри него. Молекулы газов находятся в беспрерывном хаотическом тепловом движении; при комнатной температуре скорость теплового движения молекул воздуха равна примерно 450 м/с, т. е. приближается к скорости пули. Двигаясь во всех направлениях, молекулы постоянно сталкиваются друг с другом. Чем плотнее воздух, тем больше молекул заключается в единице объема и тем чаще молекулы сталкиваются.

Если воздух разредить, то молекулы будут сталкиваться менее часто. В среднем им придется пролетать больший путь между двумя столкновениями, который и называется длиной свободного пробега.

Вакуум с физической точки зрения – это такое разрежение, при котором длина свободного пробега в среднем больше размера сосуда. Когда в сосуде вакуум столкновения молекул будут редкими, большая часть молекул в своем движении от одной стенки сосуда до другой не встретится с другими молекулами.

Вакуум является хорошим термоизолятором; перенос тепловой энергии в нём происходит лишь за счёт теплового излучения, конвекция и теплопроводность исключены. Это свойство используется для теплоизоляции в термосах, состоящих из ёмкости с двойными стенками, пространство между которыми вакуумированно.

По представлениям современной науки, реальный (физический) вакуум — это не пустота или «отсутствие всякого присутствия». Отказ от представлений о вакууме, как о пустоте является концептуальным положением современной физики. В настоящее время экспериментальным фактом можно считать утверждение о том, что вакуум — среда с очень сложной структурой, которая изменялась в ходе эволюции Вселенной и которую можно перестраивать путем изменения состояний материи, взаимодействующей с вакуумом, конкретно — путем концентрации энергии в малых областях пространства. Такая концентрация энергии изменяет не только ситуацию в системе частиц, но и саму структуру пространства. Это утверждение отражает тот факт, что вакуум является характеристикой самого пространства — времени.

Вакуум представляет собой сложный физический объект, в котором непрерывно происходит рождение и уничтожение виртуальных частиц (материализованных порций энергии). Вакуум является динамической системой, обладающей некоторой энергией, которая все время перераспределяется между виртуальными (воображаемыми) частицами.

Читайте также:  Что такое жизнь определение с точки зрения литературы

Представление о вакууме как непрерывной активности содержащихся в нем виртуальных частиц вытекает из принципа неопределенности Гейзенберга. Принцип неопределенности Гейзенберга имеет такое выражение: ΔE · Δt > h. Согласно этому, квантовые эффекты могут на время нарушать закон сохранения энергии. В течение короткого времени t энергия, взятая как бы «взаймы», может расходоваться на рождение короткоживущих частиц, исчезающих при возвращении «займа» энергии. Это и есть виртуальные частицы. Возникая из «ничего», они снова возвращаются в «ничто». Так, что вакуум в физике оказывается не пустым, а представляет собой море рождающихся и тут же гасящихся всплесков, — виртуальных частиц.

Однако воспользоваться энергией вакуума мы не можем, так как это есть наинизшее энергетическое состояние полей. При наличии внешнего источника энергии можно реализовать возбужденные состояния полей — тогда будут наблюдаться обычные (не виртуальные) частицы. Вакуум поляризуется внешним полем, и поле может порождать из вакуума пары различных частиц, причем легче всего рождаются самые легкие, т.е. электронно-позитронные пары. Такие пары интенсивно порождаются в поле с напряженностью E, работа которого на расстоянии комптоновской длины волны l=ћ/mc≈3∙10 -11 см порядка энергии покоя пары равной 2mc 2 ≅10 6 эВ, т.е. А=l=eE· . Отсюда для нахождения образования одной частицы можем написать eE ћ/mc≅ mc 2 или E≅ ≅3·10 16 В/см.

Пары достаточно быстро, хотя и не в катастрофическом темпе, могут рождаться и в более слабых полях. Поэтому достижение полей, например с E10 14 В/см уже позволило бы, вероятно, наблюдать рождение пар в вакууме.

Вакуум поляризуется не только сильным электрическим полем, но и магнитным полем, причем характерное значение напряженности магнитного поля Н такое же, как и для электрического поля Е. В магнитном поле с напряженностью более Н вакуум ведет себя подобно нелинейной анизотропной среде и сильно влияет на распространение электромагнитных волн.

Уравнения, которые открыл Дирак, показывают, что в природе существуют частицы с положительной энергией — электроны и античастицы — позитроны, энергия которых отрицательна. Они рождаются парами электрон-позитрон из физического вакуума. Сам же вакуум представляет собой некоторое латентное (скрытое) состояние электронов и позитронов. В среднем физический вакуум не имеет ни массы, ни заряда, ни каких-либо других физических характеристик. Однако в малых пространственных областях (порядка 10 — 33 см) вакуума значения физических характеристик могут стать отличными от нуля — на малых расстояниях вакуум спонтанно флуктуирует. В вакууме постоянно происходят процессы рождения и уничтожения частиц и античастиц разного сорта. Образно говоря, в малых пространственно-временных областях вакуум похож на «кипящий бульон», состоящий из элементарных частиц. Поэтому в квантовой теории возникло представление о физическом вакууме как о «квантовой жидкости», находящейся в вечном движении. Такая жидкость описывается уравнениями квантовой гидродинамики и, естественно, обладает упругими свойствами.

Рассмотрим энергетические свойства квантового вакуума. Из соотношения неопределенности и закон сохранения массы-энергии можно рассчитать промежуток времени, соответствующий массе электрона: Δt=10 -21 с. Смысл этих расчетов с точки зрения классической механики кажется безумным: в течение столь малых промежутков времени энергия вакуума испытывает достаточно большие колебания, чтобы за это время из него рождались электроны — и все прочие элементарные частицы.

Такие частицы назвали виртуальными. Индивидуально они никак не проявляют себя, но как системный ансамбль вполне заметно влияют на различие свойства материи (магнитный момент электрона, спектральные характеристики атомов и др.) Таким образом, этот вакуумный виртуальный «туман» — совершенно реальный феномен.

В 1980 г. А.Е. Акимов предложил новую теоретическую модель квантового вакуума. В основу этой модели он положил два постулата. Во-первых, предполагается, что каждый элемент Вселенной — независимо от того, содержит он материальные тела или их там нет, — заполнен свертками из круговых волн электронов и позитронов. Такая свертка, очевидно, обладает нулевым суммарным зарядом; равен нулю у нее и спин, т.к. спины образующих ее частиц направлены навстречу друг к другу.

Второй постулат состоит в том, что нулю равна и суммарная масса свертки. Это следствие закона сохранения массы-энергии при образовании свертки ее масса преобразуется в энергию пары гамма-квантов. Акимов предложил называть эту квантовую систему, имеющую нулевые значения массы, заряда и спина, фитоном. Заметим, что предсказание о неизбежности взаимной аннигиляции электрона и позитрона при их встрече следует из релятивистской теории Дирака.

Фитонная модель квантового вакуума позволяет по-новому объяснить возникновение фундаментальных взаимодействий. Поставим мысленный эксперимент — поместим заряженное электрически тело в фитонный вакуум. Следствием этого будет зарядовая поляризация фитонов, электрические заряды, образующие свертку, уже не будут полностью компенсировать друг друга, а немного сместятся в направлении внешнего поля. Каждая частица начнет раскачиваться вверх и вниз относительно уровня минимальной энергии. Такую зарядовую поляризацию фитонного вакуума можно интерпретировать как электромагнитное поле.

Если в качестве источника возмущения вакуума выбрать не заряд, а массу, то система фитонов приобретет продольную спиновую ориентацию, которая будет соответствовать гравитационному полю. А что произойдет, если источником возмущения будет тело, создающее угловой момент вращения, например, детская игрушка — волчок? Вакуум немедленно отзовется на это — произойдет поперечная спиновая ориентация фитонов.

Оказывается, таким образом, что электромагнитное поле можно понимать как зарядовую поляризацию вакуума, а гравитационное — как продольные упорядоченные по спину состояния фитонов. В третьем эксперименте мы получили принципиально новый тип фундаментальных взаимодействий — кручение вакуума. Этот тип взаимодействий получила название торсионного (torsion означает кручение).

Существование торсионных полей еще в 1922 г. постулировал Э. Картан. Однако в его теории не учитывались спиновые эффекты и, кроме того, его уравнения не содержали угловых координат. Поэтому он не смог правильно оценить константу этих взаимодействий. Эта задача была в 1980-х годах решена Г.И. Шиповым, который разработал теорию физического вакуума, используя геометрию ученика Г. Римана Ричча, содержащую угловые координаты. Теория Шипова не содержит ограничений на величину константы торсионных взаимодействий. Факт существования в природе этого нового типа полей к настоящему времени подтвержден в многочисленных экспериментах.

Физические свойства торсионных полей уникальны. Во-первых, взаимодействие торсионных квантовых вихрей носит не энергетический, а чисто информационный характер и, следовательно, на них не распространяется следующий из теории относительности запрет на существование сверхсветовых скоростей. Для торсионных полей этот запрет снимается по той причине, что они обладают свойством нелокальности. Во-вторых, по той же самой причине для их интенсивности отсутствует обратная зависимость от квадрата расстояния, как в случае электромагнитных и гравитационных полей. По этим причинам торсионные поля — идеальное средство для связи на межзвездных расстояниях. О возможности использовать их для этой цели свидетельствуют эксперименты, проведенные в разное время Н.А. Козыревым, М.М. Лаврентьевым и А.Ф. Пугачем.

Любое твердое тело, поскольку оно представляет собой ансамбль элементарных частиц, обладающих спином, при ускоренном движении вносит возмущение в «фитонное море», приводя к его поляризации по массе. Это также торсионный эффект, но проявляется он уже не в виде возбуждения торсионных полей, несущих информацию, но не энергию, а в форме возникновения всем хорошо известных сил — сил инерции. Становится, таким образом, ясным механизм возникновения этих сил, триста лет остававшийся нераскрытым. Понятным становится и «внутреннее» родство сил инерции и гравитации, а также равенство инерционной и гравитационной масс — они обусловлены одними и теми же эффектами искривления и кручения физического вакуума.

Механизм возбуждения электромагнитных и торсионных полей также обладает сходными чертами. Это приводит к возникновению еще одного типа комбинированных полей — электроторсионных. Эти поля тоже наблюдаются в экспериментах.

Эксперименты по рождению частиц из физического вакуума показывают, что их массы, заряды, спины или какие-либо другие физические характеристики относительны, появляются и исчезают в процессах рождения из вакуума или ухода в вакуум. В теории физического вакуума эти характеристики определяются через риманову кривизну пространства. Имеется гипотеза о том, что пространство-время может иметь внутреннюю дискретную микроскопическую структуру, поля расслоений описывают дефекты в этой структуре. Эти структуры задают состояние физического вакуума, их называют вакуумными конденсатами.

На нынешнем уровне знаний о природе можно сказать определенно: свойства материи целиком определяются свойствами этих вакуумных структур. Именно поэтому изучение физики вакуума и представляется приоритетной задачей физики XXI в. Сегодня можно утверждать, что, во-первых, формирование конкретных свойств элементарных частиц и их взаимодействий, в частности основных из них протона, нейтрона, электрона и нейтрино, предопределяется состоянием различных вакуумных субструктур и взаимосвязями между ними, а во-вторых, свойства наблюдаемого макромира — геометрические свойства Вселенной в целом, ее крупномасштабная структура, химический состав Вселенной, условия возникновения в ней биологических объектов — определяются свойствами частиц. Отсюда следует, что относительно небольшие изменения в структуре вакуума могут привести к радикальному изменению свойств мира. Параметры вакуумных структур жестко зафиксированы для видимой Вселенной. В этом смысле можно говорить, что вакуумные структуры самоорганизуются единственным образом, который только и позволяет существовать во Вселенной макроскопическим структурам.

Так от размышлений о природе пустоты приходим к постановке проблемы о самоорганизации вакуума. Поэтому для краткой формулировки ситуации в фундаментальной физике на рубеже XX и XXI вв. (или на рубеже II и III тысячелетий), выберем следующие ключевые слова — вакуум и самоорганизация. Заметим, что формирование категории вакуума, как объекта со сложной иерархической внутренней структурой есть результат синтеза геометрической и квантовой концепций физики XX в., а самоорганизация проявляется, как внутреннее свойство физического вакуума, которое нам и предстоит исследовать в XXI в.

Сложные структуры квантового вакуума — та первооснова, которая определяет фундаментальные свойства нашего мира в целом. Особое значение имеет проблема рождения пар частиц из вакуума вблизи сигулярностей в космологических решениях, описывающих эволюцию Вселенной. Вакуум способен порождать не только частицы, но и миры. Самопроизвольные флуктуации вакуума рождают вселенные с разным набором фундаментальных постоянных.

Работа представлена на научную конференцию с международным участием, Москва-Барселона, 7-14 июля 2006г. Поступила в редакцию 05.06.2006 г.

Что такое вакуум с физической точки зрения

На практике сильно разреженный газ называют техническим вакуумом.

Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.

Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются геттеры. Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере, и т. д.

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Физический вакуум

Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии, и т. д.

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира [1] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (так называемых ложных вакуумов) является одним из главных основ инфляционной теории Большого взрыва.

Но, пожалуй, самым наглядным из явлений, которые нельзя объяснить, не используя идею о нулевых колебаниях вакуума, это спонтанное излучение. Самые обыкновенные излучающие спонтанно лампы накаливания не светились бы, если бы вакуум был абсолютной пустотой. Дело в том, что любой объект (а, значит, и возбужденный атом), помещенный в абсолютно пустое пространство, представляет собой замкнутую систему. А поскольку такая система стабильна во времени, то никакого излучения не происходило бы. Уже из этого простого рассуждения понятно, что объяснение спонтанного излучения требует привлечения более сложной модели вакуума, чем классическая абсолютная пустота.

Физический вакуум

В современной физике термин «вакуум» используется в двух смыслах. Первый, наиболее распространенный, соответствует сильно разряженным газам. Второй (физический вакуум), используемый в теории полей, соответствует состоянию, в котором полностью отсутствуют реальные частицы. Физический вакуум – это независимая, универсальная, имеющая чрезвычайно специфические свойства физическая среда, которую ни в коем случае нельзя идентифицировать с пустотой, пустым геометрическим пространством. Эта удивительная среда играет исключительно важную роль в картине фундаментальных взаимодействий.

Физический вакуум как новый уровень реальности появился в качестве объекта исследования в первой половине прошлого столетия. Причем разные теории давали о нем разное представление. Если в теории Эйнштейна вакуум рассматривался как «ничто» – пустое четырехмерное пространство, наделенное геометрией Римана, то, например, в квантовой теории Дирака вакуум представлял собой «нечто» – своего рода «кипящий бульон», состоящий из виртуальных частиц – электронов и позитронов.

Читайте также:  Какие существуют точки зрения на язык и его сущность

Были предприняты многочисленные попытки для объединения этих представлений в рамках программы создания единой теории поля (ЕТП).

Со временем были сформированы две глобальные идеи: программа Римана – Клиффорда – Эйнштейна, согласно которой «в физическом мире не происходит ничего, кроме изменения кривизны пространства, подчиняющегося закону непрерывности», и программа Гейзенберга – Иваненко, предлагающая построить все частицы материи из частиц спина 1/2 (2). То есть первая программа опиралась только на использование геометрических характеристик пространства-времени («ничто»), а вторая – только на физические свойства частиц («нечто»).

Долгое время проблема объединения этих программ заключалась в том, что, по словам известного теоретика Джона Уиллера, «мысль о получении понятия спина из одной лишь классической геометрии представляется невозможной». То есть физическая сущность собственного момента частиц, по мнению Уиллера, не могла быть объяснена или выведена из известных геометрических свойств пространства – времени.

В науке рано или поздно решение находится, если, конечно, его ищут. Так, английский математик В. Клиффорд утверждал, что в физическом мире не происходит ничего, кроме изменения кривизны пространства, а материя представляет собой сгустки пространства, своеобразные холмы кривизны на фоне плоского пространства. Используя идеи Клиффорда, Эйнштейн в свое время сумел найти глубокую взаимосвязь абстрактного геометрического понятия кривизны пространства с физическими проблемами гравитации (ОТО).

Оказалось, что объединение программ «ничто» и «нечто» возможно, если допустить, что в физической картине мира фундаментальную роль играет скручивание (торсия) геометрической метрики. Скручивание – характеристика пространства-времени, которая определяется собственным моментом вращения объекта.

Английский ученый Р. Пенроуз сумел записать геометрические уравнения Эйнштейна в спиновом виде и доказал, что геометрические характеристики пространства-времени можно рассматривать в качестве величин, определяющих физические процессы и явления с учетом их статуса первичной реальности. Это кажется столь же невероятным, как возможность вывести из чисто физических данных геометрические характеристики пространства – времени (1).

Это открытие Пенроуза является таким же фундаментальным и столь же трудно понимаемым, как общая теория относительности Эйнштейна. Большинству людей, исповедывающих общепринятый подход к пространству и времени, вообще чрезвычайно тяжело представить кривизну пространства и скручивание, не говоря уж о том, как из этих геометрических свойств можно получить какие-либо знания о чисто физических свойствах этого пространства.

Для наших читателей мы решили привести весьма упрощенный пример, хотя понимаем, что всякое сравнение хромает, особенно если оно касается пространства Вселенной. Представьте себе объем комнаты, в которой вы находитесь. Давайте разобьем этот объем на огромное количество маленьких кубиков с помощью взаимно пересекающихся лучей света, исходящих из отверстий в потолке и в двух ортогональных стенах. Конечно, каждый такой элементарный кубик является абстракцией. А теперь представим, что отдельный кубик под действием каких-то условных внешних сил начинает деформироваться так, что обязательно имеют место угловые перемещения линейных элементов внутри пространства этого деформируемого кубика. Именно так можно представить скручивание пространства внутри каждого элементарного кубика, внутри комнаты, «внутри» мироздания. Такое скручивание порождает понятие кривизны пространства. А искривленное пространство-время – это уже гравитация.

Р. Пенроуз математически точно доказал, что именно спиноры, описывающие частицы со спином 1/2, определяют топологические и геометрические свойства пространства – времени. Словом, «ничто» и «нечто» объединились (как волна – частица) в единую сущность качественно нового физического объекта, который, по-видимому, обладает иной, нежели квантовая, природой.

Объединение программ Римана – Клиффорда – Эйнштейна и Гейзенберга – Иваненко в конце XX века завершил российский ученый академик Г. И. Шипов. Используя геометрические уравнения, записанные в спиновом виде и введя в рассмотрение принцип вращательной относительности (добавил шесть дополнительных координат вращения), Шипов получил систему уравнений, описывающих физический вакуум аналитически так же точно, как законы Ньютона описывают движение физического тела (21). Это решение наряду с обычными физическими полями (электромагнитное, гравитационное, слабое и сильное взаимодействия) описывало еще одно, неизвестное ранее поле, названное торсионным.

Чрезвычайно важно, что теория физического вакуума, разработанная Г. И. Шиповым, после соответствующих упрощений приводит к уравнениям и принципам квантовой механики. Кроме того, она отвечает на целый ряд поставленных выше вопросов.

Прежде всего удалось определить волновую функцию в уравнении Шредингера: согласно теории Шипова, она представляет собой реальное физическое поле – поле инерции. Теоретически установлена связь между полем инерции и торсионными полями, определяемыми кручением пространства; детерминизм и причинность в квантовой механике существуют, хотя неизбежна и вероятностная трактовка динамики квантовых объектов; частица представляет собой предельный случай чисто полевого образования при стремлении массы (или заряда) этого образования к постоянной величине; именно в этом предельном случае происходит возникновение корпускулярно-волнового дуализма; в квантовой теории измеряется ситуация, представляющая собой комбинацию полей, образующих измерительный прибор и измеряемый объект (21). По мнению Г. И. Шипова, современная квантовая теория не является полной, так как она не согласуется с принципом вращательной относительности.

Подтвердились догадки Эйнштейна, что квантовая теория не полна, и его предположение о том, что «более совершенная квантовая теория может быть найдена на пути расширения принципа относительности».

Модель торсионного вакуума. Первая попытка построения модели «ничто – нечто», предпринятая российскими учеными под руководством академиков А. Е. Акимова и Г. И. Шипова, опирается на теорию торсионных полей (2). В рамках этой теории они постулируют качественно новый физический объект – фитон, который одновременно обладает как свойствами частиц (сочетание волновых функций, например, электрона и позитрона), так и пространственно-временной структурой, определяющей собственный момент спина этого объекта через скручивание определенных пространственно-временных характеристик.

До модели Акимова – Шипова даже самые совершенные модели в квантовой теории поля (например, в теории струн) рассматривали первичные объекты (струны) как своеобразные кванты только пространственно-временной структуры. А в теории торсионных полей фитон сочетает в себе «ничто» (пространственно-временная структура) с «нечто» (свойства квантовых частиц) (22).

По мнению многих ученых, новая модель имеет шанс превратиться в реалистичную программу ЕТП. Особенно полезной для реализации этой идеи оказалась возможность достижения истинной электронейтральности электрон-позитронного физического вакуума при условии, что круговые волновые пакеты электрона и позитрона будут вложены друг в друга. Так как обе частицы обладают спином, то система «частица – античастица» представляет пару вложенных друг в друга частиц с противоположно направленными спинами. Вследствие истинной электронейтральности и противоположности спинов такая система не будет обладать и магнитным моментом. Такая система из частиц и античастиц, вложенных друг в друга, и называется фитоном (2).

Как пишет Г. И. Шипов, «решения уравнений первичного вакуума показывают, что в природе существуют объекты, у которых нет ни массы, ни заряда, а есть только спин. Из-за отсутствия потенциальной энергии взаимодействия у этих объектов их проникающая способность оказывается значительной».

В современной физике известна элементарная частица нейтрино, которая (теоретически), подобно фитонному (первичному) торсионному полю, обладает только спином. Экспериментально установлена высокая проникающая способность нейтрино. Известно, что нейтрино может пройти сквозь Землю без взаимодействия. Считается, что нейтрино обладает энергией, правда, однозначно не установлено, какой энергией: действительной или мнимой. Если предположить, что энергия нейтрино мнимая (существуют эксперименты, указывающие на это), то тогда скорость распространения нейтрино должна превышать скорость света. Причем чем меньше мнимая энергия нейтрино, тем больше его скорость. В пределе, когда мнимая энергия обратится в ноль (при отличном от нуля импульсе), скорость нейтрино должна устремиться к бесконечности.

У первичного торсионного поля энергия и импульс равны нулю с самого начала, поэтому говорить о скорости распространения этого поля не имеет смысла. Оно как бы сразу есть везде и всегда.

В отличие от предлагаемых ранее моделей, например модели Дирака (модель виртуальных частиц) или модели аксионов Хиггса, новая модель первичного физического вакуума на основе фитонного ансамбля представляет упорядоченную структуру. Не тот ли это порядок, о котором говорят Д. Бом и Дж. Чу?

Поляризация физического вакуума. В такой упорядоченной модели легко определяются основные случаи поляризации физического вакуума под влиянием внешних источников. Что это значит?

Физический вакуум изменяет свои свойства в зависимости от того, с какими материальными объектами он взаимодействует. Например, если в какой-либо точке пространства появится некое массивное тело, обладающее массой, то это вызовет соответствующие изменения в поляризации среды физического вакуума, которые определят характер гравитационного поля.

Аналогично, если в какой-либо точке пространства появится частица, несущая заряд, он изменит поляризацию среды физического вакуума и в своем новом состоянии среда приобретет свойства, которые определят специфику электромагнитного взаимодействия.

На уровне элементарных частиц также существуют различные силы взаимодействия, проявление которых описывается с помощью понятия «физическое поле». Например, элементарные частицы имеют массу, которая создает гравитационное поле, являющееся причиной взаимного притяжения тел в космическом пространстве. Электрический заряд, которым также обладает элементарная частица, является источником электромагнитного поля, обуславливающего взаимодействие между заряженными элементарными частицами. Иными словами, все поля, которые мы можем констатировать на макроуровне, создаются их первичными носителями – элементарными частицами.

Логично предположить, что любой независимый параметр, характеризующий физическую сущность элементарных частиц, представляет собой источник некоего фундаментального поля, обуславливающего специфическое взаимодействие между ними. Другими словами, любому независимому параметру, характеризующему элементарные частицы, должно соответствовать материальное поле, являющееся причиной взаимодействия частиц посредством данных параметров.

Если это так, то наряду с известными фундаментальными полями гравитации и электромагнитного взаимодействия должно существовать еще одно фундаментальное поле, соответствующее независимому параметру «спин» элементарных частиц, который характеризует их собственный момент вращения. Он независим, ибо не связан ни с массой, ни с зарядом.

Иными словами, должно существовать некое новое фундаментальное взаимодействие между элементарными составляющими материи, обусловленное их вращением вокруг собственной оси. Это также должно означать, что в природе все вращающиеся объекты должны каким-то образом взаимодействовать друг с другом. Именно об этом говорил Э. Картан в своих исследованиях в 1913 году: «В природе должны существовать поля, порождающиеся вращением».

Рассуждая подобным образом, мы приходим к выводу о необходимости существования в природе некоего нового механизма поляризации, соответствующего физическому полю спина вращающихся частиц. Тела, обладающие таким свойством, поляризуют среду физического вакуума уже новым, третьим способом. Именно в новом состоянии этой среды физический вакуум приобретает особые свойства, обуславливающие так называемое спиновое, или торсионное, поле (от франц. torsion – вращать) (23).

Таким образом, физический вакуум проявляется как электромагнитное поле в том случае, когда он поляризован зарядом (Е). Находясь в состоянии продольной спиновой поляризации, он проявляется как гравитационное поле (G), а спиновая поперечная поляризация (S) соответствует новому типу дальнодействия в физической реальности, обозначенному как первичное торсионное поле (ПТП). Это поле существенно нелинейно и обладает сложной внутренней структурой, что позволяет ему быть носителем значительных объемов информации (24). Очевидно, что торсионное поле обладает свойствами, принципиально отличающими его от других фундаментальных физических полей.

По этому поводу болгарский физик Б. Палюшев пишет: «Сочетание вероятностной картины с нелинейностью является новым веянием в науке» (17).

Физические параметры, характеризующие EGS-поля, представляют собой независимые кинематические величины, которые определяют характер универсальных дальнодействующих физических сил.

«Интегрированный» физический вакуум. Исследования показали, что физический вакуум состоит из двух причинных слоев, двух уровней: торсионного и квантового. Структура физического вакуума на основе фитонов отличается от структуры физического вакуума на квантовой основе.

Фитонный, или торсионный, вакуум – это глубокий и упорядоченный уровень реальности, связанный с теми физическими свойствами, которые можно свести к разнообразным геометрическим качествам пустого пространства (1). Квантовый вакуум касается сущности фрагментирования в реальном, вещественно-энергетическом мире. Физический вакуум, состоящий из двух уровней, назван «интегрированным» вакуумом.

«Интегрированный» физический вакуум обнаруживает непосредственную связь с квантовой нелокальностью. Как выяснилось в результате исследований, объекты квантовой нелокальности – это прежде всего объекты, обладающие собственным моментом вращения (спином) (1). Оказалось, что теория торсионных полей способна объяснить явления квантовой нелокальности.

До появления теории торсионных полей перевес в споре о нелокальности был на стороне Бора, и попытки Эйнштейна доказать существование скрытых параметров не имели успеха. Однако сегодня наука обладает возможностью объяснения механизмов нелокальности, а постулирование нового, торсионного слоя в физическом вакууме, по существу, означает введение таких параметров в теорию. Но признание этих удивительных результатов связано с радикальным изменением нашего понимания самой сущности физической реальности.

Вытекающая из теории физического вакуума теория торсионных полей, учитывающая нелинейность, утверждает, что на фундаментальном уровне физических процессов действует какой-то более глубокий, чем теория вероятности, принцип. Этот принцип свидетельствует о том, что за вероятностной картиной мира скрывается еще более глубокое содержание или причина, в известном смысле имеющая логическое объяснение. Вполне возможно, что именно первичные торсионные поля представляют тот самый имплицитный уровень, о котором говорят Д. Бом и Дж. Чу. В таком подходе обнаруживается аналогия с утверждением Бома о том, что наша осязаемая повседневная реальность на самом деле всего лишь иллюзия. «Под ней находится более глубокий порядок бытия – беспредельный и изначальный уровень реальности, – из которого рождаются все объекты…»

Читайте также:  Современные точки зрения на гражданскую войну

Свойства торсионных полей

Рассмотрим основные свойства торсионных полей.

1. Вращение элементарных частиц характеризует новое геометрическое свойство пространства и времени, называется торсией, или скручиванием, и связано с вращением самих пространства и времени.

2. Торсионные поля в противоположность гравитационному и электромагнитному полям сугубо нелинейные. Например, электромагнитное взаимодействие возникает всегда и только при том условии, если есть заряд. Наложение (то есть одновременное воздействие в одной и той же точке) двух электромагнитных полей также, в свою очередь, является электромагнитным полем.

С торсионным полем дела обстоят совсем по-другому. Наложение двух разных торсионных полей не всегда в результате дает торсионное поле. С другой стороны, существуют ситуации, когда торсионные поля могут генерировать сами себя. Это свойственно только нелинейным физическим полям. Другими словами, в определенных состояниях физический вакуум может самостоятельно, спонтанно, без видимых причин создавать, генерировать торсионные поля. В этом смысле торсионные поля могут быть генерированы за счет определенной геометрической формы или мыслеформы, то есть они имеют подчеркнуто информационный характер. Человеческое мышление, например, является своеобразным генератором торсионных полей. Биополе живых организмов также является разновидностью торсионного поля. «Можно сказать, что биологическое поле на базовом уровне представляет собой молекулярные торсионные поля, излучаемые хроматином (хромосомами)» (25).

3. Торсионные поля имеют еще одну важную особенность. Некоторые физические поля могут существовать и проявляться в чистом виде. Например, когда есть какая-либо масса, то вокруг нее всегда возникает только гравитационное поле, которое проявляется в чистом виде, без какой-либо примеси других физических полей. Когда речь идет об электромагнитных полях, то оказывается, что их всегда сопровождают торсионные поля. Торсионные и электромагнитные поля не могут существовать в чистом виде. Они всегда в той или иной степени наложены одно на другое. Физический вакуум так устроен, что поляризация в нем среды, вызванная электрическим зарядом тела, всегда сопровождается неизбежным, обязательным возникновением и компонентов торсионного поля. И наоборот, торсионные поля не могут существовать в чистом виде, самостоятельно, отдельно от физической среды электромагнетизма. Любое электромагнитное поле одновременно является источником торсионного поля. В сочетании с электромагнитными свойствами материя торсионного вакуума приобретает особую структуру, основным компонентом которой является фитон. Оказывается, что в торсионном поле кроется разгадка так называемых скрытых параметров, и с помощью торсионного поля можно объяснить такое явление, как нелокальность, или «квантовая связанность», элементарных частиц.

4. Торсионные поля имеют осевую симметрию. В то время как все другие поля имеют сферическую симметрию и распространяются во все стороны одинаково, в случае с торсионным полем существуют отдельные направления в пространстве. Это связано с необходимостью наличия определенного направления при ориентации оси вращательного движения.

5. Торсионный сигнал распространяется мгновенно (его скорость в миллиард раз превышает скорость света) и проходит через любые естественные среды без затрат энергии. Дело в том, что при осевой симметрии не работает закон обратных квадратов, поэтому интенсивность торсионного поля не зависит от расстояния до источника поля и торсионные поля обладают исключительной проникающей способностью в любых природных средах.

6. Существует еще одно важное и необычное свойство торсионных полей. Так, например, частицы, имеющие одинаково ориентированные спины (то есть вращающиеся в одном направлении вокруг своей оси), притягиваются друг к другу. По этой причине два электрона являются связанными друг с другом в химических валентных связях элементов из таблицы Менделеева, несмотря на наличие силы электрического отталкивания между ними, обусловленного их одноименными электрическими зарядами. Это обстоятельство красноречиво свидетельствует о мощности и силе торсионного взаимодействия, особенно с учетом того, что его интенсивность не уменьшается с увеличением расстояния между телами. Это может быть причиной квантовой связанности, или квантовой нелокальности. Данное свойство характеризуется тем, что сила, связывающая между собой два электрона с одинаково ориентированными спинами, заставляет их постоянно оставаться в связанном состоянии независимо от расстояния, на которое они могут быть удалены друг от друга после того, как однажды испытали силу взаимного торсионного притяжения, находясь в непосредственной близости друг от друга. Вспомним эксперименты Аспекта с частицами, «одна из которых находилась в Лондоне, а другая – в Нью-Йорке».

И наоборот, частицы, находящиеся рядом друг с другом, но имеющие противоположно ориентированные спины, испытывают столь же мощное по своей силе торсионное отталкивание.

Новое понимание физической реальности

Теория физического вакуума Шипова соединила воедино мир плотных форм и тонкоматериальный мир. Решение системы уравнений, полученной Шиповым, позволило математически смоделировать представление о мире как о системе, состоящей из семи уровней реальности: Абсолютное «Ничто», первичные торсионные поля кручения, физический вакуум (эфир), плазма, газ, жидкость, твердое тело (21).

Оказалось, что для каждого из шести уровней реальности можно написать содержательные уравнения, решение которых дает описание свойств материи и вещества на каждом из этих уровней. Что касается седьмого уровня, то полученные тождества не позволяют сделать выводы относительно каких-либо свойств Абсолютного «Ничто». Этот уровень не поддается математическому объяснению.

Исходя их теоремы Е. Ньютера, Абсолютное «Ничто» может рассматриваться как расслоение двух основных сущностей. Одна соответствует части, описанной как полностью упорядоченное состояние Абсолютного «Ничто», а другая – как полностью хаотичное состояние, о котором нельзя сказать ничего конкретного. На этом уровне реальности нет ни наблюдателя (сознания), ни формы материи (вещества, энергии). Но именно неопределенность, вытекающая из полного хаоса во втором состоянии Абсолютного «Ничто», порождает видимые реальности в нашем физическом мире.

Для того чтобы осознать Абсолютное «Ничто» и сделать его упорядоченным, необходимо некое активное начало. Академик Шипов пишет: «Пустое пространство предполагает существование „первичного Сознания или Сверхсознания“, способного осознать Абсолютное „Ничто“ и сделать его упорядоченным. На этом уровне реальности решающую роль играет „первичное Сознание“, выступающее в роли активного начала – Бога и не поддающегося аналитическому описанию» (26). Иными словами, активные действия информационного характера некоего Сверхсознания, или Бога, непонятные человеческому разуму, приводят к появлению универсального компонента физического пространства – времени, первичного торсионного поля, который, по всей вероятности, отражает качества этого Сверхсознания.

По поводу седьмого уровня реальности академик А. Е. Акимов говорит: «Абсолютное „Ничто“ – это среда, которая обладает, с одной стороны, программой, матрицей возможного. И в этой матрице заложены структура и свойства всех нижних уровней реальности. С другой стороны, для реализации этой матрицы, этого плана, необходимо некое воздействие, или, как бы мы сказали, воля и сознание. Помимо наличия самих матриц, воля и сознание – это те два свойства, которыми неотвратимо должен обладать данный уровень. Их роль состоит в осознанной реализации (в эзотерике бы сказали – в воплощении) тех планов и возможностей, которые потенциально существуют в Абсолютном „Ничто“» (27).

Сознание и воля реализуют матрицу, заложенную в седьмом уровне реальности, в виде первичного вакуума, первичного торсионного поля, которое представляет собой совокупность вихрей правого и левого вращения, каждый из которых меньше размера элементарной частицы.

Такие вихри заполняют все пространство Вселенной на шестом уровне реальности – уровне полевой материи. Вихри не имеют массы покоя, взаимодействие их таково, что они не передают энергии, но передают информацию. Этот уровень не имеет никаких физических характеристик, за исключением характеристик кручения. Передача информации происходит за счет взаимодействия квантовых вихрей, причем происходит мгновенно, ибо скорость появляется тогда, когда есть понятие энергии. Если энергетического параметра нет, то отсутствует и параметр скорости.

По мнению академика Акимова, структура шестого уровня представляет собой гигантскую голограмму, заполняющую собой всю Вселенную, а следовательно, каждая точка во Вселенной обладает полнотой информации о прошлом, настоящем и будущем (27).

Итак, седьмой уровень реальности в соответствии с матрицей порождает первичное торсионное поле – торсионный вакуум, который, в свою очередь, порождает следующий уровень реальности – квантовый вакуум.

Материя квантового физического вакуума содержит в себе те же свойства, что и торсионный вакуум, плюс еще некоторые. Эта среда материальна, но не вещественна. Она содержит информацию о веществе, о том, какими могут быть, а какими не могут быть параметры элементарной частицы. При этом сами частицы в вакууме отсутствуют. Это полевая, информационная структура, но она порождает элементарные частицы, которые при определенных условиях не аннигилируют, и тогда начинается образование систем типа ядер, атомов и т. д.

Совокупность квантового и торсионного вакуума представляет «интегрированный» физический вакуум.

Б. Палюшев пишет: «Информация, которая приходит от Абсолютного „Ничто“ к состоянию первичных торсионных полей, напоминает творческую работу скульптора, который из камня ваяет совершенные произведения искусства. Разница состоит лишь в том, что исходным материалом для скульптурирования является утонченная материя геометрического пространства, которая не нуждается в грубой силе при отделении предмета творения от свежего материала. „Нож“ творца является информационным, а творение можно назвать первичным полем информации, относящимся ко всей физической реальности. Именно „вибрации“, идущие от этого поля, в состоянии воздействовать на сознание человека, передавая ему скрытую в нем информацию…» (1).

С точки зрения профессора Палюшева, представленная информация приводит к новому пониманию вмешательства Бога. Новым является то, что Бог создает по своему образу и подобию не только человека, но и наполняющую среду вселенского пространства, которая обладает качествами человеческого сознания в масштабах, многократно превышающих масштабы человеческого мозга. «Это поле Всемирного Сознания – результат творческой деятельности, которая базируется не на оперировании грубой материальной вещественной средой, а на утонченных информационных процессах, протекающих на деликатной структуре геометрических полей и их отражений на свойствах первичного пространства-времени. В результате такой творческой деятельности появляется информационно насыщенная материальная среда, которая излучает свои послания через вибрации, имеющие совершенно новую, отличающуюся от вещественно-энергетического мира природу» (1).

Доктор философских наук В. А. Колеватов по поводу информационных потоков пишет: «Уже давно мы пришли к пониманию того, что в особенном, органическом обмене веществ между живыми телами и окружающей средой, отличающим живую природу от неживой, кроме всеми признанных двух потоков обмена (вещество и энергия) присутствует третий, самый важный и, может быть, ключевой для научного решения проблемы сущности жизни: поток обмена информацией… Поток информации оказывается для живого тела более важным, чем потоки вещества и энергии: поток информации в органическом обмене предваряет потоки вещества и энергии и управляет ими» (28).

Итак, есть все основания предполагать существование нового фундаментального взаимодействия, порожденного классическим спином, – информационного. Эксперименты показывают, что эффекты от таких взаимодействий весьма разнообразны и зачастую трудно воспроизводимы, и это затрудняет их ясную идентификацию как других фундаментальных физических взаимодействий. Тем не менее экспериментаторы все чаще фиксируют торсионные поля (например, в опытах академика Казначеева), ученые все больше склоняются к признанию новой физической реальности. Академик Казначеев утверждает: «Наша планета постоянно вращается в геокосмическом пространстве (солнечно-эфирном, гравитационном), к которому она и принадлежит. Так или иначе, но все мы на планете находимся в разнообразных торсионных полях» (29).

Это становится поводом для перехода к новой парадигме, поскольку новый вид полевой материи (информационной) уже не будет отвечать за такие традиционные физические величины, как энергия, импульс, угловой момент и др., а будет переносить информацию. Переносчиками этой информации становятся другие фундаментальные физические дальнодействующие силы, связанные с информационным блоком новой полевой формы. Любое изменение в распределении спинов будет мгновенно отражаться на структуре торсионного слоя физического вакуума, который отвечает за новое фундаментальное взаимодействие. Через специфические излучения этого поля физический вакуум воздействует своеобразным энергоинформационным образом на более грубые уровни реальности. «Такая среда обладает неограниченной способностью сохранять информацию о физическом мире, воздействуя на его структуру через особый механизм контактов, в котором выделяется уникальная возможность различать адреса характеров непрекращающихся голограмм» (1).

В огромной физической среде Вселенной, рассматриваемой в теории торсионных полей (ТТП) как единое целое, каждая бесконечно малая точка содержит неограниченный объем информации (Все во Всем). Такой подход сближает ТТП с голографической теорией Вселенной Бома и с моделью Вселенной Дж. Чу.

Кроме того, математические структуры теории торсионных полей также во многом напоминают модель, разработанную в теории имплицитного порядка Бома. Однако теория торсионных полей постулирует возможность человеческого сознания вступать в контакт с первичным торсионным полем, взаимодействовать с Сознанием Вселенной (2). И это именно то, что отсутствует в теориях Бома и Чу, хотя они считают эксплицитные элементы сознания неотъемлемым элементом Вселенной. На объединение этих теорий, которые вместе с ТТП представляют сегодня наиболее успешное описание единства, устойчивости и гармонии в отношениях между компонентами физической действительности, возлагаются большие надежды.

Такое объединение уже происходит, и связано оно прежде всего с работами академика В. П. Казначеева, который теоретически объясняет и, что самое главное, экспериментально исследует сознание человека и Сознание Вселенной, доказывает взаимосвязь околоземного голографического пространства с голографической структурой человеческого интеллекта, с голографическим пространством клетки.

Голографическую концепцию Бома – Прибрама, основанную на примере оптических голограмм, новосибирские ученые под руководством Казначеева расширили за счет торсионных голографических пространств.

Источники:
  • http://www.psciences.net/main/sciences/physics/articles/article-11.html
  • http://fundamental-research.ru/ru/article/view?id=5254
  • http://dic.academic.ru/dic.nsf/ruwiki/1165058
  • http://esoterics.wikireading.ru/55253