Меню Рубрики

Что такое стробоскопический эффект его влияние на зрение

Стробоскопический эффект (греч. strobos кружение, вихрь + skopeo рассматривать, наблюдать) — возникновение зрительной иллюзии неподвижности или мнимого движения предмета при его прерывистом (с определенной периодичностью) визуальном наблюдении.

Анимированная оптическая иллюзия

Стобоскопический эффект

На этом ролике частота кадров съёмочного аппарата совпадает с частотой вращения лопастей вертолета. Поэтому кажется, что лопасти не вращаются.

При освещении движущихся или вращающихся предметов пульсирующим световым потоком может появится стробоскопический эффект, связанный с искажением зрительного восприятия. Если, например, освещать таким пульсирующим световым потоком вращающееся с определённой угловой скоростью колесо, то при равенстве или кратности угловой скорости вращения колеса частоте пульсации, оно при этом освещении будет казаться неподвижным. Если угловая скорость вращения будет меньше частоты пульсации, то нам покажется, что колесо медленно вращается в обратную сторону по сравнению с действительным направлением вращения. Такой обман зрения опасен сточки зрения техники безопасности, так как при этом возможно получение травм.

Пример опасности стробоскопического эффекта

Кроме того, пульсация светового потока оказывает влияние на эффективность зрительной работы, вызывая повышенную утомлённость органа зрения. Явление стробоскопического эффекта может возникнуть не только при наличии движущихся предметов в поле зрения работающего, но и при выполнении любой работы, когда происходит относительное перемещение глаза и освещаемого предмета. В связи с этим, при устройстве люминесцентного освещения следует принимать меры к максимальному снижению пульсации светового потока.

Световой поток, излучаемый источником света, при питании его переменным током не остаётся постоянным, а меняется по величине, следуя за изменениями тока через лампу. В момент, когда ток, проходящий через лампу, имеет нулевое значение, равен нулю и создаваемый лампой световой поток. Следовательно, световой поток лампы пульсирует с двойной частотой по отношению к частоте сети.

При освещении лампами накаливания мы не замечаем пульсации светового потока из-за тепловой инерционности нити накала. Люминесцентные лампы не обладают такой инерционностью, поэтому прекращение тока в них приводит к немедленному погасанию разряда и исчезновению свечения лампы. Люминофоры обладают свойством послесвечения, т.е. в течение некоторого промежутка времени после прекращения их облучения ультрафиолетовым излучением они продолжают излучать видимый свет, что сглаживает пульсацию светового потока лампы.

Для разных типов люминофоров время и интенсивность послесвечения различные.

Интенсивность пульсации светового потока, создаваемого люминесцентными лампами, также зависит от длительности начальной и конечной пауз тока, которые в свою очередь определяются типом балласта.

При работе люминесцентной лампы и в моменты её зажигания излучаются электромагнитные колебания, лежащие в диапазоне радиочастот, которые могут создавать радиопомехи. При разработке схем включения ламп приходится принимать меры к снижению уровня радиопомех, создаваемой лампой и её пускорегулирующей аппаратурой.

Более подробно информацию можно прочитать в книге Фугенфирова М.И. «Что нужно знать о газоразрядных лампах.»

Представьте себе вращающийся вокруг своей оси диск черного цвета, на край которого белой краской нанесена метка.

Допустим, вращение диска происходит с постоянной скоростью, равной 3000 оборотов в минуту. При постоянном освещении диска нам будет просто казаться, что его край имеет светлый оттенок.

Если теперь постоянное освещение заменить кратковременными вспышками света, ярко освещающими диск, которые будут иметь частоту, равную или немного отличающуюся от 3000 Гц, то у наблюдателя возникнет зрительная иллюзия, будто диск неподвижен или вращается медленно в ту или иную сторону. Такая зрительная иллюзия и называется стробоскопическим эффектом.

На основе стробоскопического эффекта работают, например, некоторые тахометры.

Есть в этом явлении и потенциальная опасность. При нарушении техники безопасности в машиностроительных цехах или в учебных мастерских, когда в шумной обстановке есть возможность свободного доступа к работающему оборудованию, отсутствует блокировка, нет ограждений, рабочему кажется, что отдельно стоящий станок шума не издает, и в силу стробоскопического эффекта возникает иллюзия, что подвижная часть машины стоит на месте.

Это может привести к несчастному случаю, ведь человек может получить опасное для жизни увечье. Причиной проявления стробоскопического эффекта в данном примере являются неправильно подключенные люминесцентные лампы, часто применяемые для освещения цехов и мастерских.

Дело в том, что люминесцентная лампа, включенная в электрическую сеть переменного тока, имеющего частоту 50 Гц, в силу отсутствия тепловой инерционности электрического разряда в парах ртути, мерцает с частотой 100 Гц. Так происходит по причине того, что ток в сети дважды за период достигает максимального значения и дважды снижается до нуля, вот и получается мерцание лампы.

Этому эффекту не подвержены лампы накаливания, ведь нить накала обладает значительной тепловой инерционностью и поэтому не мерцает. В случае же с люминесцентными лампами, если кратность оборотов шкивов, валов и прочих вращающихся частей оборудования совпадет с частотой мерцания лампы, то стробоскопический эффект будет иметь место и оборудование может показаться рабочему неподвижным или вращающимся очень медленно, что и представляет опасность.

Для устранения стробоскопического эффекта от люминесцентных ламп, необходимо питать несколько цепей таких ламп от разных фаз, либо вообще отказаться от использования люминесцентных ламп и прибегнуть к применению ламп накаливания или светодиодных систем освещения.

В простейшем случае, мерцание легко устраняется включением люминесцентных ламп в разные фазы, тогда свет никогда не гаснет полностью. Как правило, для надежного устранения стробоскопического эффекта таким способом, число ламп должно быть кратно двум для двухфазной сети и трем для сети трехфазной.

В обычных условиях, когда в распоряжении всего одна фаза, стробоскопический эффект можно легко устранить посредством парного включения люминесцентных ламп, когда одна из ламп подключается к сети через фазосдвигающий конденсатор или дроссель.

Благодаря реактивному элементу, между токами в двух лампах достигается такой сдвиг фаз, что когда первая лампа гаснет, вторая имеет максимальную яркость, и освещенность благодаря этому выравнивается.

Польза от тактического фонаря стробоскопа: миф или реальность ?

Многие из наших клиентов, которым мы привезли «тактический фонарик» под заказ — нет, да нет, да и спрашивают, про полезность такой вещи, как функция стробоскопа (быстро воспроизводить повторяющиеся яркие световые импульсы). К сожалению, в Российской практике стробоскопический ослепляющий эффект практически не освещен, что привело к возникновению многих мифов и заблуждений. В этой статье мы попытаемся это исправить. Начать следует с предыстории: как появился эффект стробоскопа и что это собственно такое.

Что такое стробоскоп ?
Стробоскопом (от греческого «strobos» (кружение, беспорядочное движение) и «skopio» (смотрю)) называется источник света (лампа, фонарик, прожектор), вспыхивающий с разной частотой. У человека, увидевшего эти вспышки возникает ощущение вспышек электросварки, звездного неба или разряда молнии. Соответственно, под тактическим фонарем стробоскопом подразумевается яркий фонарь, способный быстро мигать (мерцать) и ослеплять противника. Однако, как оценить эффективность этого ослепления (и, соответственно, оценить пользу от стробоскопа) ?. Для начала следует углубиться в теорию.

Эффект Буча
Еще в далеких 1950-х годах была «открыта» дезоориентационная способность световых вспышек. При воздействии низкочастотного мигающего или мерцающего света человек начинал испытывать легкое помутнение сознание. На данный феномен не стали обращать большое внимание, если бы не участившиеся жалобы экипажей вертолетов, жалующихся не дезориентацию и головокружение. Глядя на небо, члены экипажа подвергались слепящему воздействию солнца: вращающиеся лопасти вертолета заставляли свет «мерцать», создавая эффект стробоскопа и мешая пилотам управлять машиной, вследствии чего довольно часто случались ЧП.

Из-за поднявшейся в прессе шумихи начались научные изыскания. Первым в мире научно это воздействие описал доктор Буч. Его имя к сожалению было утеряно, однако лавры первооткрывателя остались. В дальнейшем психологическое воздействие стробоскопа было названо «дисбалансом клеточной активности мозга, вызванной воздействием низкочастотного мерцания яркого света«. Для достижения нужного эффекта, «мерцание» должно было производиться с частотой от 1 до 20 герц, т.е. примерно совпадать с частотой мозговых волн человека. К слову сказать — приблизительно из-за тех же причин случаются эпилептические припадки. Также этот эффект называют «Flicker vertigo» ( Wikipedia.org/wiki/Flicker_vertigo ). Нынче, если обратить внимание, можно заметить, что практически все пилоты вертолетов (в т.ч. в к\ф) носят солнцезащитные поляризационные очки — одной из причин для этого является тот самый «эффект Буча».

Принципы повсеместного развития стробоскопа
История тактических фонарей далеко не нова — были раньше, есть и сейчас. Однако, раньше возможность фонаря с функцией стробоскопа не могла быть реализована чисто физически в силу неподходящей для этого технологии.

Сейчас, когда ламповые фонари практически отошли в прошлое и почти 95% продукции реализовано на светодиодах — для строба открыты все дороги. Решается это парой секунд в программировании микроконтроллера. Помимо функции стробоскопа (быстрое мигание) светодиоды позволяют реализовать и функции попроще: например подачу SOS сигнала или режим маяка.

Тем не менее, зачастую производители пихают стробоскоп до кучи (лишь бы был), хитро используя маркетинг в своих целях. Мол, не сомневайтесь, уважаемый покупатель, он вам пригодится. Как определить, является ли наличие строба в фонаре хитрой уловкой продавцов, или же это действительно важная тактическая инновация ?

Необходимо взвесить плюсы и минусы.

Стробоскоп нарушает зрение противника, т.е. напрямую влияет на его возможность применять грубую физическую силу а также нарушает психическое состояние, вызывая эффект смятения, т.е. напрямую влияет на его возможность предпринимать ЛЮБЫЕ действия (в т.ч. стрелять по вам на поражение, коли говорить НЕ о физическом противодействии).


Стробоскопический эффект базируется на восприятии мозгом так называемого «остаточного изображения». С подобным сталкивался практически каждый из нас, долгое время посмотрев на солнце или на яркую лампочку. В мозгу человека (а не на сетчатке, как многие думают) создается так называемый «визуальный отпечаток», вызванный кратковременным воздействием точечного света с высоким уровнем интенсивности. Этот отпечаток представляет из себя нематериальное изображение (т.е. не въевшееся в сетчатку), которое может меняться (размеры, форма и т.д.) в зависимости от длительности и частоты светового воздействия. Эффект дезориентации и головокружения возникает в том случае, если подобные отпечатки-изображения возникают и пропадают с слишком большой скоростью, т.е. меняются так часто, что мозг не успевает приспособиться к их циклу и частоте.
Стробоскопические тактические фонари не позволяют фоторецепторам обнуляться, т.е. вызывают тот самый сбой в поле зрения человека. Яркий мерцающий свет обманывает человеческое восприятие, имитируя информацию, поступающую сегментами, в то время как мозг пытается склеить из них цельный образ, который меняется с каждой вспышкой. «Остаточные изображения» с каждым мерцанием накапливаются, что загружает мозг противника по полной и практически мгновенно вызывает дезоориентацию.
Самодельный прототип подобного «оружия» уже многие годы является инструментом психологического давления на допросе: мало кто не видел, как преступнику светят лампой в глаза.

В кино мы неоднократно видели, как добрые дяди следователи-полисмены помещают источник яркого света прямо напротив глаз подозреваемого. Если напрячь память — многие вспомнят сцены, где лампа при допросе покачивалась. Тогда, за неимением светодиодных фонарей, эффект стробоскопа создавали именно так, выводя допрашиваемого из ментального равновесия. Если же лампа не покачивалась, то ее перемещали (например, двигали по столу) вручную, дополняя это криками «Будешь отвечать ?! Говори ! Ну же !». Это делалось для того, чтобы аудиальное воздействие (крики) имело больший психологический эффект в силу того, что визуальное восприятие мира (зрение) недоступно из-за слепящего эффекта.

Читайте также:  Как узнать какое зрение у ребенка

Это, кстати говоря, одна из главных причин, по которой нельзя сидеть лицом к костру (в особенности смотря на огонь). Так сидят лишь беспечные туристы, либо полные новички в «выживальщическом» ремесле — профессионалы знают, что огонь «притягивает взгляд». По научному это «притягивание» объясняется тем, что человеческий глаз активнее реагирует на движении, нежели на неподвижность. Этим пользуются многие преподаватели и учителя, когда на уроке не сидят неподвижно за своим столом, а расхаживают по кабинету, вынуждая студентов и учеников следить за собой и концентрировать внимание. Также, это объясняется тем, что огонь различается по интенсивности светового воздействия и световому градиенту (одни куски светлее, другие темнее, цвет и сила света постоянно меняется (языки и всполохи пламени, мерцающие угли и прочее)). Это означает засвечивание определенных частей глаза и потерю боеспособности (засвеченная часть глаза временно не будет видеть движения).

Подобный эффект лишний раз доказывает эффективность стробоскопа.

Резюмируя плюсы и преимущества стробоскопа:

У фонаря с функцией стробоскопа есть несколько наиболее достоверных и неоднократно проверенных временем плюсов, а именно :
1) Дезориентирует противника
2) Нарушает прямое и периферийное зрение противника
3) Увеличивает время адаптации противника к ситуации
4) Вызывает кратковременный страх, смятение, оцепенение
5) Увеличивает время восстановления ночного зрения противника
6) Создает визуальное и психологическое препятствие против агрессии

Тем не менее, помимо преимуществ существуют некоторые недостатки и тактические проблемы, способные сильно помешаеть в реальном боевом столкновении.

При световом воздействии БЕЗ сопровождения источника постоянного (не мерцающего) света (например фонарь налобник или напарник с обычным фонарем или офицер прикрытия с прожектором) стробоскоп «размазывает» зрение его владельца, что приводит к тому, что человек без опыта применения строба ТЕРЯЕТ возможность замечать медленные или плавные движения. Подобный эффект вы могли встретить практически на любой дискотеке, попробовав поводить рукой в мелькающих лучах света.

В США, среди офицеров полиции, была проведена серия тестов, имитирующих реальное задержание. Офицер становился напротив преступника и включал фонарь стробоскоп, деморализуя противника. Результаты тестов показали, что инструктор, играющий роль бандита, абсолютно спокойно мог подвинуть руки на дистанцию до 20-30 см длинной, до того, как полицейский замечал его угрожающие намерения. Стоит заметить, что если в роли «бандита» выступаете вы, то движения следует сделать максимально плавными, медленными и осторожными, чтобы избежать преждевременного обнаружения.
Кроме того, воздействие любого яркого света на сетчатку в условиях низкой освещенности (в темноте в особенности) мгновенно и напрочь отшибают ночное зрение. Исследований на тему «что сильнее бьет по глазам в темноте — строб или прямой свет» практически нету, но де-факто строб будет воздействовать СИЛЬНЕЕ, т.к. помимо засветки ночного зрения он привносит эффект дезориентации в пространстве. Это связано с тем, что период адаптации зрения человека после кратковременной вспышки гораздо короче, нежели после серии мерцаний.
Если объяснять на пальцах, то многие из нас, находясь в темноте, неоднократно получали «световой удар» по глазам — например подсветкой от телефона (посмотрели время ночью), включившимся телевизором (на яркой сцене, особенно с полной белой засветкой экрана) или например монитором компьютера (легли отдохнуть, послушали пару песен, монитор погас (тайм-аут экрана). встали, «пробудили» монитор — по глазам резануло).

Можно взять еще более жизненные варианты — случайный отсвет от обычного зеркала в темноте, вызывающий дискомфорт и мгновенную дезориентацию. Все эти случаи — единичная вспышка, после которой зрение способно БЫСТРО (буквально за 1-2 секунды) восстановиться и адаптироваться к изменившимся условиям, т.е. ночное зрение вновь «включается». После череды же подобных вспышек глаза начинают уставать и «терять» картинку.
Подобное можно наблюдать на темной аллее, освещенной фонарями, стоящими довольно далеко друг от друга (т.е. когда между освещенными площадями попадаются «кусочки» темноты.

Человек, шагая по такой местности в темное время суток, постоянно подвергается дезориентации, т.к. глаз не успевает сфокусировать резкость и окружающее темное пространство «размыливается». Подобные моменты неоднократно показывались в кино — когда жертва, идя по освещенной подобным способом улице, не замечает следящего за ней маньяка.
Те, кто неоднократно бывают за рулем на НЕосвещенном шоссе в темное время суток — прекрасно поймут данную часть статьи, т.к. по сути постоянно подвергаются «эффекту стробоскопа» от встречных машин. Каждая из них движется с разной скоростью и имеет свой тип фары с разным углом наклона к земле и разной интенсивностью освещения, а также разным типом светового элемента (лампа накаливания, ксенон и т.д.). Водитель авто получает по глазам вспышки разной частоты, яркости и интенсивности, что постоянно держит его полуслепым и НЕспособным быстро отреагировать на экстренное изменение дорожной ситуации. Если же еще начинается снег или дождь, где каждая из капель, по сути, является фокусирующей свет линзой…

Связано сие «ослепление» с так называемым фактором «темновой адаптации глаз». Если вкратце, то заключается оно в следующем :
0) темновая адаптация начинается с момента погружения глаз в темноту и делится на три стадии
1) во время первой (15-30 мин в зависимости от возраста и состояния зрения) происходит наболее интенсивная адаптация к условиям малой освещенности (или полного отсутствия света)
2) во время второй (30-60 мин) происходит постепенное и непрерывное нарастание световой чувствительности
3) во время третьей (60-80 мин) происходит окончательная и полная адаптация к темноте и полноценное «включение» ночного зрения.
Это происходит из-за того, что человеческий глаз состоит из нескольких слоев нервных клеток, заканчивающихся концевым аппаратом: колбочками и палочками, которые и представляют собой рецепторы света. Эти рецепторы различным образом реагируют на разную интенсивность света. Колбочки обладают более низкой чувствительностью и представляют собой аппарат дневного света, позволяющий различать цвета. Палочки — наоборот, отличаются высокой чувствительностью к слабым интенсивностям света и являются аппаратами ночного зрения (их в сетчатке намного больше).
Иными словами, адаптация происходит лишь после того, как слои данных рецепторов адаптируются и «устаканятся» в вашем глазу.
При эффекте стробоскопа «устаканиться» они не могут, т.к. вынуждены постоянно реагировать на очередное изменение цвета и освещенности «видимого» пространства. Это проявляется даже в мелочах — практически любой человек хоть раз выходил из ярко освещенного помещения на темное крыльцо, где сразу же «терялся» и становился практически слепым. Или наоборот — из темного, не освещенного подъезда, выйти на свет. Самый интересный факт, что после подобной смены локаций человек НЕ СПОСОБЕН вести эффективное наблюдение приблизительно вплоть до середины второй стадии, т.е. практически 45 минут человек не представляет из себя достойного часового.
Согласно динамике темновой адаптации глаз, через 5 минут чувствительность глаза увеличивается всего лишь на 30% от исходного уровня, а через 15-20 минут — на 80%. Это время зависит от «перепада» между старой и новой, устанавливающейся чувствительностью. Одно дело, когда человек погружается в темноту из полумрака, другое — когда он предварительно находился в ярко освещенном помещении. Тогда же, когда человек постоянно чередует освещенные и неосвещенные локации, чувствительность глаза падает еще ниже 30%. «Слепота» максимальна тогда, когда человек погружается в темноту сразу после преодоления освещенного участка. В случае со стробоскопом негативным фактором является то, что использующий строб человек САМ подвергается его воздействию, пусть и в значительно меньшей степени, постоянно попадая из освещенного «участка» во тьму.

Резюмируя вкратце минусы и недостатки стробоскопа:

1) Стробоскоп мешает замечать медленные или плавные движения
2) Стробоскоп слепит своего владельца, даже если направлен в другую сторону
3) Боевое использование стробоскопа противопоказано не привыкшим к его воздействию новичкам
4) Все вышеперечисленные пункты решаются наличием независимого дополнительного источника ПОСТОЯННОГО света, т.е. второго НЕ мерцающего фонаря (напр. налобного) или напарника с фонарем.
_______________________________________

Необходимость использования стробоскопа

В ходе полноценного боевого столкновения недостаточная информированность и нехватка данных о противнике сами по себе являются сильным психологическим фактором, вызывающим стресс, а также… страх. Именно на этом базируется «тактический» стробоскоп — на визуальном и психологическом давлении на врага. По сути своей, дезориентация перед стробом — это страх перед неизвестностью, перед непонятным «пугающим» воздействием. Одна из задач полицеской мигалки – именно такое воздействие (вращающийся либо мигающий проблесковый маячок создает тот самый стробоскопический эффект).

Находясь под воздействием вспышек, в большинстве своем человек ограничен в способности получать визуальную информацию о происходящем вокруг, т.е. его внимание не способно ни на чем сконцентрироваться, что приводит к моментальному дискомфорту, а следом и постепенному зарождению страха. Террористы не способны идентифицировать размер и угрозы (полиции, спецназа), количество штурмующих, их физическое присутствие, точное местоположение, условия окружающей среды и многое другие. Все это служит достаточно сильным сдерживающим фактором и может быть весьма и весьма эффективно в умелых руках. Оценить эффективность подобного болееменее можно по вот этому видео :

Даже несмотря на опосредованное воздействие (через камеру) становится заметно — со стробоскопом перемещения проходят намного эффективнее (менее заметными для противника).
В ходе тестов офицеров полиции США было выявлено, что передвижение с применением стробоскопа намного эффективнее, нежели без него. Используя тактический строб, офицер успевал пройти до 25 футов (

8 метров) ДО ТОГО, как «бандит» замечал, что он движется. Практически все перемещения офицера на меньшие расстояния оставались незамеченными и неправильно или не точно опознанными. В тех же тестах при СТАТИЧНОМ воздействии (т.е. офицер стоял на месте) стробоскоп терял свою эффективность намного быстрее. Однако, важную роль здесь играет светочувствительность периферийного зрения. Если стробоскоп статичен (находится на одном месте), а его владелец смещен чуть дальше (например, стоит в нескольких шагах сбоку), то велики шансы того, что враг либо не заметит владельца, либо не сможет адекватно оценить степень угрозы и постарается в первую очередь выбить сам стробоскоп. Иными словами, если положить мерцающий фонарик, а самому отойти и занять огневую позицию чуть в стороне — вы окажетесь в большей безопасности, нежели скрываясь за стробоскопом. Подобные тактики идеальны при защите объектов или удержании коридоров и прочих узких мест.

Резюмируя вкратце :

1) Тактический стробоскоп вещь больше полезная, нежели наоборот
2) Наибольшую эффективность строб выдает при постоянном перемещении своего носителя
3) Динамический стробоскоп (перемещающийся) эффективен в атаке
4) Статический стробоскоп (неподвижный) эффективен при оборонительной тактике и удержании позиций

Частота стробоскопа
Существенную роль играет частота мерцания стробоскопа:
— Частота до 2 герц (1-2 вспышки в секунду) используется в пожарных сигнализациях, школах, больницах, стадионах и тд и является полностью безопасной.
— Частота до 8 герц (6-8 вспышек в секунду) оказывает на человека незначительное воздействие (возможны зрительные затруднения и появление разноцветных засветов).
— Частота до 12 герц (10-12 вспышек в секунду) оказывает полноценный стробоскопический ослепляющий эффект
— Частота до 16 герц (14-16 вспышек в секунду) оказывает полноценный стробоскопический ослепляющий эффект
— Частота до 25 герц (23-25 вспышек в секунду) мало эффективна и практически не оказывает ослепляющего эффекта
Большинство современных «тактических» фонарей стробоскопов имеют заводское ограничение по частоте мерцания в 10-12 герц (10-12 вспышек в секунду). Как правило, этого вполне достаточно для ослепления.

Читайте также:  Как сберечь зрение при работе на компьютере

Стробоскоп, эпилептические припадки и Закон о Полиции
Пусть и редко, но стробоскопический эффект способен вызвать у ослепляемого человека судороги и приступ светочувствительной эпилепсии. Одним из примеров подобного может служить случай, произошедший в 1997 году в Японии. Во время показа одной из серий мультсериала « Pokemon » был изображен большой взрыв, представляющий собой чередование мигающих синих и красных огней, в результате чего 685 детей, увидевших эту сцену, были отправлены в госпиталь. Причиной этому было то, что показанный взрыв представлял собой стробоскопические вспышки, задействовавшие несколько цветов с частотой приблизительно в 20 герц. Несмотря на то, что 90% из 685 госпитализированных детей жаловались всего лишь на головокружение, некоторых из них пришлось положить на лечение в силу индивидуальных особенностей.
Подобная практика имеется и в архивах спецслужб — в основном западных, ибо в Российских МВД подобное мало задокументировано. Некоторые из преступников, на задержание которых офицеры полиции пришли с фонариком-стробоскопом, впадали в ступор и испытывали незначительный приступ судорог, что позволяло скрутить их без особых усилий. В большинстве случаев это были люди, находящиеся под воздействием ПАВ (наркотических средств), либо воздействием сильного алкоголя. В отличии от электрошокера и прочих подобных инструментов воздействия на преступников, фонарь-стробоскоп не является спец.средством, разрешен к свободной продаже и полностью легален. В случае приступа судорог у пойманного преступника офицер полиции, использовавший стробоскоп, не попадает под действия Закона О Полиции т.к. нанесенный им вред не являлся умышленным, а также сам по себе не попадает под категорию «вреда» или «насилия» (обычный фонарь).

Заключение:
В заключение можно сказать, что фонарь с функцией стробоскопа — вещь полезная и нужная и может пригодиться в трудный момент. Плюсы стробоскопического ослепляющего эффекта перевешивают минусы — всего то и требуется, что потренироваться и привыкнуть к стробу перед его «боевым использованием».
Купить тактический фонарь с функцией стробоскопа можно под заказ в нашем магазине.

Стробоскопический эффект в люминесцентных лампах

Стробоскопический эффект в люминесцентных лампах

Люминесцентная лампа в сети переменного тока 100 раз в секунду зажигается и гаснет, так как при частоте 50 Гц ток 100 раз в секунду меняет направление, проходя через нуль. Погасания лампы не видны, однако они вредно влияют на зрение и, кроме того, могут исказить действительную картину движения освеща­ емых предметов. Это явление называется стробоскопическим эффектом.

Устранить периодические погасания люминесцентной лампы принципи­ально невозможно: это ее природа. Но с помощью простых мер освобожда­ют люминесцентное освещение от неблагоприятных последствий: утомляе­ мости зрения, стробоскопического эффекта, акустических помех радиоприему, а также повышают коэффициент мощности. Если эти меры приняты, то люминесцентное освещение безопасно.

Чтобы не портить зрение и исключить стробоскопический эффект, помеще­ ния, где производится работа, освещают не одной, а несколькими лампами, а лампы включают со сдвигом фаз между токами, проходящими через них.

Благодаря этому, когда одна лампа притухает, другая горит наиболее ярко и освещенность выравнивается. Сдвиг фаз достигается одним из двух способов.

Первый способ. Если в помещении есть сеть трехфазного тока, то лампы, расположенные рядом, присоединяют к разным фазам, чтобы использовать неодновременность достижения максимальных и нулевых значений токов разных фаз. Число ламп в помещении должно быть кратно трем. Лучше всего, если три лампы расположены в одном светильнике.

Стробоскопический эффект – то, что заставляет удивляться

Наверняка у всех бывало так, что смотришь на машину, которая едет вперед, и возникает ощущение, что колеса двигаются в обратную сторону или вообще не двигаются. Или, например, в каком-то фильме летит вертолет, и кажется, что лопасти не вращаются. Это и есть стробоскопический эффект, который является довольно непростым понятием в области физики. Если вникать в определение, то с греческого языка данное словосочетание будет означать очередную совокупность из понятий «кружение» и «наблюдать» (также можно перевести как «вихрь» и «рассматривать»). И это классический оптический обман зрения, который обусловлен рядом факторов.

Что представляет собой данный эффект

Стробоскопический эффект – это не что иное, как оптический обман зрения, который возникает при искаженном восприятии движущихся частей. И нельзя не сказать, что в физике различают два основных типа данного эффекта:

1. Первый тип характеризуется тем, что при наблюдении за быстро сменяющими друг друга отдельными фазами движения возникает иллюзия непрерывного движения. Это связывается с особенностями зрительного восприятия. Так, например, если время между появлениями каких-то отдельных изображений значительно меньше промежутка, то образы сливаются, и движение воспринимается непрерывным. Именно на этом эффекте строится движение в кинематографе, при условии, что частота киносъемки и проекции приблизительно равна частоте происходящего процесса.

2. Данный эффект второго типа подразумевает, что при каких-то конкретных условиях будет возникать иллюзия покоя предмета, который на самом деле двигается, и пример с вертолетом обуславливает именно данный тип стробоскопического эффекта. Но здесь особую роль играет освещение.

Такие оптические илюзии на самом деле наблюдал каждый, просто кто-то на это не обращает внимания, а кто-то просто не объяснит физическую почву возникновения данного эффекта. Тем не менее, сложности в восприятии подобных действий обусловлены и рядом биологических факторов, в частности, речь идет об особенностях построения зрительного органа и восприятия им окружающей реальности – это называется инерцией зрения.

Яркие примеры данного эффекта в реальной жизни

На самом деле, если говорить про стробоскопический эффект и о том, где его можно наблюдать в реальной жизни, то примеры привести довольно непросто. И самым очевидным примером, который можно наблюдать всем, это дискотека. Как проявляется данный эффект на танцевальной площадке? Естественно, что в клубах есть специальное освещение и масса зеркал. Все это способствует тому, что когда люди танцуют, возникает ощущение, что они движутся как роботы. Естественно, что это связано именно с мерцанием света и с особенностями его восприятия человеческим органом зрения.

Также, если у вас есть камера замедленной съемки, вы можете наблюдать стробоскопический эффект, если будете снимать капанье воды из крана. В результате вы увидите, что одна капля бывала с определенными отрывками на всех промежутках, а падала, как нам кажется, плавно.

Довольно много примеров данного эффекта воспроизводится физиками в лабораторных условиях. Для этого воспроизводят определенный свет с импульсными источниками, с возможностью регулировать частоту – это стробоскопы. Итак, при этих исследованиях можно наблюдать, например, особенности движения лопастей вентилятора. При конкретном освещении может возникать ощущение того, что лопасти с определенной периодичностью движутся в разные стороны или вообще становятся неподвижными. Также при помощи стробоскопа можно наблюдать за движением мяча и особенностями его траектории. Такой эффект и стробоскоп, в частности, используется не только для определения каких-то теоретических моментов, но и полезен для производства определенных деталей машин.

Стробоскопический эффект как причина производственного травматизма и предупреждение его образования

Стробоскопический эффект проявляется в искаженном восприятии движущихся частей оборудования. Например, вращающийся шкив кажется неподвижным или медленно вращающимся в обратную сторону. Это явление может возникнуть в результате совпадения частоты переменного тока (f=50 Гц) с кратностью числа оборотов вращающихся частей оборудования.

Стробоскопический эффект может возникнуть в производственных помещениях с системой освещения люминесцентными лампами, питаемыми переменным током.

Источником переменного тока являются генераторы, которые работают на принципе электромагнитной индукции, под действием которой в цепи протекает переменный электрический ток.

Переменный ток характеризуется периодом и частотой. Период -это промежуток времени, в течение которого ток совершает одно полное изменение по величине и направлению. Период обозначается буквой Т и измеряется в секундах. Число периодов в одну секунду называется частотой переменного тока и обозначается буквой f. Частоту измеряют в герцах (Гц) (1 Гц — это один период в 1 с). Стандартной частотой промышленного переменного тока в нашей стране принята частота 50 Гц.

За период изменения ток дважды достигает своего максимального значения и дважды практически равен нулю. В результате люминесцентная лампа 100 раз в секунду зажигается и столько же гаснет, так как разряд в парах ртути тепловой инерционностью не обладает. В лампе накаливания этого не происходит благодаря высокой степени тепловой инерции вольфрамовой нити.

Явление стробоскопического эффекта возникает, как было сказано, при совпадении частоты тока с кратностью числа оборотов вращающихся частей оборудования, т. е. происходит «накладывание» периода включения — выключения люминесцентных ламп на период вращения валов механизма.

При нарушении техники безопасности на предприятии может иметь место свободный доступ к рабочим органам машины (отсутствие ограждения на приводе или его блокировки с пусковым устройством и т. п.). В общем производственном шуме не слышна работа отдельно стоящего оборудования, рабочему кажется, что оно не работает — все вращающие детали «стоят» на месте. Попадая руками в работающий механизм, человек может получить тяжелое увечье. В акте по расследованию несчастных случаев на производстве в графе «причина несчастного случая» нередко указано — «стробоскопический эффект».

Явление стробоскопического эффекта может быть устранено применением специальных схем включения ламп в разные фазы двух- или трехфазной сети.

При этом происходит сдвиг фаз на 30 ток в сети выравнивается и не происходит отключения лампы (рис.).

Рис. Схема включения люминесцентных ламп в разные фазы

Для предупреждения образования стробоскопического эффекта рекомендуют, чтобы число ламп, светильников общего освещения в условиях производства было кратно трем при трехфазной или двум при двухфазной электрической сети в целях удобства включения их в разные фазы.

Стробоскопический_эффект_Захаров_АТ_11

Министерство Образования Российской Федерации Пермский национальный исследовательский политехнический университет

Выполнил студент группы Захаров Евгений Проверил преподаватель кафедры АТ: Панов В.А.

Стробоскопический эффект (греч. strobos кружение, вихрь + skopeo рассматривать, наблюдать) — возникновение зрительной иллюзии неподвижности или мнимого движения предмета при его прерывистом (с определенной периодичностью) визуальном наблюдении.

Стробоскопический эффект — зрительная иллюзия, возникающая в случаях, когда наблюдение предмета или картины осуществляется не непрерывно, а в течение отдельных периодически следующих один за другим интервалов времени (например, при периодическом открывании и закрывании проецируемой на экран картины вращающимся диском с прорезями — обтюратором, или переодических вспышках света в темном помещении).

При освещении движущихся или вращающихся предметов пульсирующим световым потоком может появится стробоскопический эффект, связанный с искажением зрительного восприятия. Если, например, освещать таким пульсирующим световым потоком вращающееся с определённой угловой скоростью колесо, то при равенстве или кратности угловой скорости вращения колеса частоте пульсации, оно при этом освещении будет казаться неподвижным. Если угловая скорость вращения будет меньше частоты пульсации, то нам покажется, что колесо медленно вращается в обратную сторону по сравнению с действительным направлением вращения. Такой обман зрения опасен сточки зрения техники безопасности, так как при этом возможно получение травм.

Световой поток, излучаемый источником света, при питании его переменным током не остается постоянным, а меняется по величине, следуя за изменениями тока через лампу. В момент, когда ток, проходящий через лампу, имеет нулевое значение, равен нулю и создаваемый лампой световой поток. Следовательно, световой поток лампы пульсирует с двойной частотой по отношению к частоте сети. При освещении лампами накаливания мы не замечаем пульсации светового потока тепловой инерционности нити накала. Люминесцентные лампы не обладают такой инерционностью, поэтому прекращение тока в них приводит к немедленному погасанию разряда и исчезновению свечения лампы.

Читайте также:  Как выбирать очки для коррекции зрения

Стробоскопический эффект очень опасен на производстве в условиях машиностроительных цехов: при определенном стечении обстоятельств и освещении цеха газоразрядными лампами, возможна иллюзия того, что стремительно вращающиеся части станка кажутся абсолютно неподвижными. В условиях цеха, когда зашумленности определить движение предметов можно только визуально, это может стать причиной мгновенной гибели или увечья. Для предотвращения этого, освещение цехов газоразрядными лампами должно производиться с питанием нескольких цепей осветительных ламп от разных фаз.

Стробоскопический эффект обусловлен инерцией зрения, т.е. сохранением в сознании наблюдателя воспринятого зрительного образа на некоторое (малое) время после того, как вызвавшая образ картина исчезает. Если время, разделяющее дискретные акты наблюдения, меньше времени «гашения» зрительного образа, то образы, вызванные отдельными актами, сливаются и наблюдение субъективно ощущается как непрерывное.

Частота движения тела при несовпадении частот движения тела и световых импульсов

где f д — частота движения тела, Гц; f и.с. — частота импульсов света, Гц.

Стробоскопический эффект используется при бесконтактном измерении скорости вращения тел.

1)Фазовый способ измерения длины волны ультразвука, основанный на использовании стробоскопического эффекта при помощи бегущих ультразвуковых волн, отличающихся тем, что с целью повышения точности модулируют одну из бегущих ультразвуковых волн, освещаемых пучком свет, по фазе, наводят последовательно ось изображения и по расстоянию между соседними максимумами судят о длине ультразвуковой волны.

2)Способ определения окружных люфтов трансмиссий с ведомым и ведущими валами, заключающийся в том, что на ведомом валу наносят базовую метку и вращают его с определенной и постоянной угловой скоростью, отличающийся тем, что с целью повышения точности определения люфтов освещают базовую метку стробоскопическими импульсами с частотой, при которой метка кажется неподвижна, изменяют синхронно скорость вращения ведущего вала и частоту импульсов и определяют угол отклонения метки от первоначального ее положения, по которому судят о люфтах трансмисий.

1. В чем заключается суть стробоскопического эффекта? ( Стробоскопический эффект — возникновение зрительной иллюзии неподвижности или мнимого движения предмета при его прерывистом (с определенной периодичностью) визуальном наблюдении. )

2. Как можно объяснить это явление? ( Стробоскопический эффект обусловлен инерцией зрения, т.е. сохранением в сознании наблюдателя воспринятого зрительного образа на некоторое (малое) время после того, как вызвавшая образ картина исчезает. Если время, разделяющее дискретные акты наблюдения, меньше времени «гашения» зрительного образа, то образы, вызванные отдельными актами, сливаются и наблюдение субъективно ощущается как непрерывное. )

3. В чем заключается опасность стробоскопического эффекта на производстве? ( Стробоскопический эффект очень опасен на производстве в условиях машиностроительных цехов: при определенном стечении обстоятельств и освещении цеха газоразрядными лампами, возможна иллюзия того, что стремительно вращающиеся части станка кажутся абсолютно неподвижными. В условиях цеха, когда зашумленности определить движение предметов можно только визуально, это может стать причиной мгновенной гибели или увечья. )

4. Где применяется стробоскопический эффект?

( Стробоскопический эффект используется при бесконтактном измерении скорости вращения тел.)

5. Где в жизни можно явно наблюдать стробоскопический эффект?

(Например колесные диски движущегося автомобиля «начинают вращаться» в обратную сторону, лопасти вертолета кажутся неподвижными/медленно вращаются, в то время как скорость их вращения огромна)

1)Найти с какой частотой будут вращаться лопасти вентилятора, если частота оборотов электродвигателя 100 Гц, а частота освещения 102 Гц?

Негативные последствия стробоскопического эффекта

Раздел 3. Экологические проблемы воздействия искусственных источников электромагнитных излучений оптического диапазона на окружающую среду

Негативные последствия стробоскопического эффекта

1.Частота мигания ламп.

2.Использование стробоскопического эффекта в шоу.

3.Негативные последствия стробоскопического эффекта.

1.Частота мигания ламп

Пульсация светового потока возникает у источников света, которые работают на переменном токе. Это воспринимается как мигание света при пульсации светового потока. Частота мигания зависит от частоты переменного тока: 50 Гц или 60 Гц.

Пульсация источников света характеризуется коэффициентом пульсации, определяемым по соотношению максимальных и минимальных значений световых параметров. Подходы в определении коэффициента пульсации различны.

Например, в упрощенном виде коэффициент пульсации определяется из выражения:

, (1)

где Фмах, Фmin – соответственно, максимальное и минимальное значение потока излучения.

В этом случае максимальное и минимальное значение потока излучения находят по осциллограмме, которая представляет собой график колебания потока излучения (рис.1).

Рис.1. К расчету коэффициента пульсации по осциллограмме

Однако более точно коэффициент пульсации рассчитывается по формуле:

, (2)

где Фср, Еср – соответственно, средние поток лампы и освещенность из осциллограммы, определяемые как Ycp = S/l (S – площадь графика) из рис.2.

Рис.2. К расчету коэффициента пульсации по осциллограмме по площади графика

Значения коэффициента пульсации в некоторых световых приборах приводятся в таблице 1.

Таблица 1. Значения коэффициента пульсации в световых приборах

Тип источника в световом приборе

ДКсТ – дуговая ксеноновая трубчатая лампа в одной кварцевой разрядной колбе;

ДРЛ – дуговая ртутная лампа с люминофором;

ЛД – лампа дневного света;

ЛБ – люминесцентная лампа белого света;

ДРИ – дуговая ртутная лампа с излучающими добавками.

Пульсация светового потока приводит к стробоскопическому эффекту – ложному представлению о движении.

2.Использование стробоскопического эффекта в шоу

Стробоскоп (от греч. strobos – кружение, беспорядочное движение и skoрео – смотрю) изначально был прибором-игрушкой, представлявшей два диска, вращающихся на общей оси (рис. 1) (БСЭ).

На одном диске, как на циферблате часов, рисовались фигурки в различных фазах какого-либо повторяющегося процесса, например, отдельного положения движения шагающего человека. Ещё один диск, скреплённый с первым, прорезан радиальными щелями, через которые можно видеть расположенные за ними картинки.

При вращении дисков зритель в смотровое окошко и сквозь щели вращающегося диска видит последовательно на короткие мгновения каждую из картинок и это расчленённое по времени на дискретные фазы движение объекта воспринимается им в виде слитного образа, совершающего непрерывное движение.

Такое синтезирование единого зрительного образа движущегося предмета из последовательно предъявляемых через некоторые интервалы на короткое время отдельных его смещённых друг по отношению к другу изображений называется стробоскопическим эффектом 1-го типа.

Принцип действия древней игрушки был основан на фундаментальных свойствах аппарата человеческого зрительного восприятия, что позволило с успехом использовать его в ряде научных и технических применений и в шоу. Так, на нём основано воспроизведение движущихся изображений в современной кинематографии и телевидении.

Стробоскопический эффект 2-го типа – иллюзия не движения, а, напротив, неподвижности предмета, на самом деле совершающего движения. При этом условием кажущейся остановки стробоскопически наблюдаемого предмета, совершающего периодическое движение с частотой fo, будет равенство или кратность этой частоты частоте стробоскопического освещения fcтp.

Если, например, частота вспышек света, который освещает вращающуюся спицу (рис. 2), будет равна числу оборотов спицы за 1 сек, то спица будет освещаться каждый раз в одном и том же положении «О» (в одинаковой фазе кругового движения) и зрительно она будет казаться неподвижной.

Если же частоту появления вспышек несколько уменьшить, то период между вспышками увеличится и за этот период спица будет совершать целый оборот, плюс поворот ещё на небольшой угол, следовательно, при каждой следующей вспышке она будет казаться немного сдвинутой в направлении вращения, последовательно в положении 1, 2, 3 и т. д., то есть она будет казаться медленно вращающейся в том же направлении, как это показано на рис. 2 а.

В том случае, когда частота вспышек немного больше числа оборотов спицы в сек, каждая последующая вспышка будет освещать спицу в положении, пока она не сделала ещё полного оборота, то есть последовательно в положениях О, 1, 2, 3. и т. д. (рис. 2 б), и она будет казаться медленно вращающейся в противоположную сторону от её реального движения.

Такое же кажущееся обратное вращение спицы возникает и в случае, когда частота вспышек почти вдвое, втрое или вчетверо меньше вращения спицы. Этим объясняется стробоскопическая иллюзия, которую мы иногда видим в кино.

Стробирование применяют в телевидении, вычислительной технике и т. д. в системах, где необходимы выделение сигнала на фоне естественных или искусственных помех и корректировка отдельных характеристик сигналов.

В частности, стробирование находит применение в радиолокации – в системах поиска, сопровождения по дальности или по угловым координатам, при определении скорости цели. Так, если при определении дальности до цели с помощью импульсной радиолокационной станции известен интервал времени прихода импульса, отражённого от цели tи (то есть с точностью tи известно положение цели), то достаточно принимать отражённые импульсы (сигналы) лишь в течение этого времени, открывая вход приёмника стробирующим импульсом (стробом) длительностью tK, а остальное время держать приёмник «закрытым». В результате значительно снизится общий эффект действия помех и повысится помехозащищённость системы.

Стробоскопический эффект применяется еще в одной совершенно неожиданной области – в стробоскопии.

Стробоскопия (от греч. strobos – кружение, беспорядочное движение и skopeo – смотрю), наблюдение за движением голосовых складок (связок) методом непрямой ларингоскопии с применением прерывистого света.

Стробоскопия применяют для определения функциональных и органических поражений гортани.

Стробоскопия проводится при помощи стробоскопа (стробофона). Стробоскопия даёт возможность настраивать частоту световых импульсов на частоту колебаний истинных голосовых складок испытуемого. При использовании электронного стробоскопа настройка производится автоматически. Если частота световых импульсов совпадает с частотой колебаний складок, то они кажутся неподвижными. При искусственном сдвиге частоты световых импульсов по отношению к колебаниям голлсовых складок становятся видимыми их колебания.

Стробоскопическому эффекту посвящено практическое занятие.

3.Негативные последствия стробоскопического эффекта

Следует заметить, что при частотах вспышек, кратных частоте вращения спицы, возникает удвоение, утроение, учетверение и т. п. увеличение кажущегося числа спиц, застывающих неподвижно на равных друг от друга угловых расстояниях по ходу её вращения.

Стробоскопы находят широкое применение во всех областях человеческой практики, связанных с использованием стробоскопического эффекта. Так, стробоскопический эффект 2-го типа применяется при изучении движения объектов с периодической структурой (вращающиеся диски, движущиеся линейки с делениями, колёса, валы и т. п.). Его используют, например, в индикаторах угловых скоростей [БСЭ].

Негативные последствия стробоскопического эффекта проявляются в том, что вращающиеся объекты (например, узлы и детали токарного станка) кажутся неподвижными, что приводит человека к заблуждению. В итоге рабочий может получить травму.

Как известно, люминесцентные лампы могут вызвать стробоскопический эффект, при котором вращающиеся детали кажутся остановившимися.

Пульсации освещенности нормируют по коэффициенту Кп, численное значение которого зависит от разности максимальной Emax и минимальной Emin освещенностей по отношению к средней за период колебания:

. (24.1)

При этом коэффициент пульсации освещенности выражается в процентах.

Для исключения явления стробоскопического эффекта и поддержания гигиенических условий освещения устанавливают допустимые значения коэффициента пульсации освещенности, приведенные в табл.1.

Таблица 1. Допустимые значения коэффициента пульсации освещенности (по СНиП II-4-79)

Источники:
  • http://ingsvd.ru/main/lights/1230-chto-takoe-stroboskopicheskiy-effekt-i-kak-s-nim-borotsya.html
  • http://www.surv24.ru/blogs/2013/07/06/fonar-s-funkciej-stroboskopa/
  • http://www.megadomoz.ru/article/684/197/
  • http://fb.ru/article/46488/stroboskopicheskiy-effekt-to-chto-zastavlyaet-udivlyatsya
  • http://znaytovar.ru/s/Stroboskopicheskij-effekt-kak-p.html
  • http://studfiles.net/preview/2654031/
  • http://pandia.ru/text/80/623/59495.php