Меню Рубрики

Что такое информация с точки зрения кибернетики

Информация и ее социально-значимые свойства

Информация – это настолько глубокое и общее понятие, что его нельзя объяснить одной фразой. В это слово вкладывается разный смысл в технике, науке и в жизни. Поэтому рассмотрим понятие информация с разных точек зрения и попробуем определить общие черты.

В обычной жизни –

n Итак, информация:

в широком смысле — это отражение реального мира;

в узком смысле – это любые сведения, являющиеся объектом хранения, передачи и преобразования.

с точки зрения кибернетики — информацией является содержание передаваемых сигнальных последовательностей

Тип информации

Содержание

Поставщик содержания

Биржевая и финансовая

Индексы рынка, цены, обзоры, котировки

Биржи, банки, службы финансовой информации

Экономическая: демографическая статистика

Первичная и вторичная: национальная, региональная статистика

Переписи: опросы, аналитические исследования

Коммерческая

Данные о предприятиях, товарах услугах

Аналитические службы

Деловые новости

Состояние рынка, события в области экономики

Службы фильтрации, агентства новостей

Научно-техническая

Фундаментальные, прикладные науки

Центры НТИ, издательства, библиотеки

Правовая

Нормативно-правовые акты

Законодательные органы, МИНЮСТ

Медицинская

Медучреждения, болезни, лекарства, яды

Информационные центры, библиотеки, госпитали

Потребительская и развлекательная

Образование, музыка, библиотеки, кино

Справочные службы, учреждения

Бытовая

Погода, туризм, справочники

Информационные службы

Для того чтобы обладать информацией, необходимо извлекать этот смысл, основное содержание объективной действительности для удовлетворения своих информационных потребностей.

Собранная человечеством и хранящаяся в книгах информация называется сведениями.

Читая книги, мы извлекаем из них информацию. Из одной и той же книги разные люди извлекают разную информацию. Даже один и тот же человек, читая одну и ту же книгу, может каждый раз извлекать разную информацию.

Извлеченная информация обрабатывается и сохраняется в головном мозге человека и становится его знаниями. Не вся информация может стать знаниями человека, часть может быть утеряна, а часть обогащена имеющимися знаниями человека.

Знания можно сохранять на бумаге (в тетради, книге и т. д.), тогда для другого человека, все эти знания будут сведениями.

Получается такая цепочка:

Информация является частью окружающего мира, т.е. его объектом. И, как любой объект, информация должна обладать некоторыми свойствами, позволяющими отличать ее от других объектов. Можно привести немало разнообразных свойств информации. Однако для информатики наиболее существенными являются следующие свойства:

1) Объективность и субъективность – зависит от человеческого фактора.

2) Полнота , если ее достаточно для понимания и принятия решений. Неполнота информации сдерживает принятие решений или может повлечь ошибки.

3) Актуальность – актуальную информацию важно иметь при работе в изменившихся условиях.

4) Достоверность , если она отражает истинное положение дел. Недостоверная информация может привести к неправильному пониманию или принятию неправильных решений.

5) Понятность. Если ценная и актуальная информация выражена непонятными словами, она может стать бесполезной. Инфор­мация становится понятной, если она выражена языком, на котором говорят те, кому предназначена эта информация.

6) Доступность – возможность получения информации

7) Адектватность – степень соответствия реальному объективному состоянию дела.

Домашнее задание – конспект, заполнить таблицу:

Заметки от первого лица об IT, новостях и старостях технологий.

Что такое информация? Сегодня мы с лёгкостью употребляем этот термин, зачастую понимая под ним множество разных вещей, но давайте попробуем разобраться, что же такое информация с точки зрения кибернетики — науки, изучающей общие закономерности процессов управления и передачи информации в любых существующих системах. По сути, это понятие будет наиболее точным и в то же время, обобщающим многие другие понимания этого слова. Итак, приступим!

Для всех систем, в которых тем или иным образом, протекают процессы управления (это могут быть устройства регулирования или живые организмы), характерна одна общая черта: отдельные части этих систем связаны друг с другом таким образом, что они передают друг другу некоторые сообщения о процессах, в них происходящих, с помощью сигналов. Именно по этому признаку можно проследить глубокое сходство и единство процессов управления. Энергетические процессы, сопровождающие сигнализацию, играют второстепенную и непринципиальную роль. По сути, важна не энергия, а сигнал! Чтобы показать на примере справедливость последнего замечания, зададим себе вопрос: чему равен коэффициент полезного действия телевизора или радиолокатора? Ответить на этот вопрос невозможно (как, впрочем, и на всякий неправильно поставленный вопрос) уже лишь только потому, что на выходе телевизора, радиолокатора и других, подобным им систем, энергия как таковая не представляет никакого интереса. Ведь назначение радиолокатора состоит не в отдаче энергии в той или иной форме, как это свойственно энергетической машине, а в решении совершенно иной задачи. При этом и радиолокатор, и телевизор, потребляют энергию, и даже в значительных количествах, но вот только отдают они не энергию, а информацию, т.е. сведения в виде сигналов.

Вообще понятие информации — весьма широкое. Есть множество её носителей — информацию переносят телеграф, телефон и радио. Информация записана на граммофонных пластинках, магнитных лентах, на фотоснимках и литографских оттисках. Информация передается с помощью человеческого языка устно или письменно, ее пересылают по почте, издают в виде книг, газет и журналов, хранят в библиотеках (обычных и цифровых). Информация заключена в отсчете измерительного прибора, в результатах контроля продукции, в числовых подсчетах, в математических формулах и таблицах. Наши органы чувств тоже получают информацию — зрение, слух и осязание приносят нам сигналы о внешних событиях, а внутренние органы человека (и любого другого живого существа) обмениваются информацией, координируя свою совместную работу. Ничтожные количества химических веществ доставляют нам посредством обоняния и вкуса информацию о качестве пищи. Изменения физических величин (электрического напряжения и тока, электромагнитного поля, давления), механические перемещения вводят информацию в автоматические устройства и позволяют получить из них новую информацию.

Информация — это то, что несёт на себе след какого-то факта или события, события, которое уже произошло или должно произойти, все то, что доставляет нам об этом факте сведения или сообщения. Создание, передача, хранение, использование и главным образом преобразование информации происходит и в машинах и в живых организмах по определенным строгим законам. Правила, по которым происходит преобразование информации, называют алгоритмами преобразования (хорошим примером такого алгоритма может служить любая математическая формула). Законы существования и преобразования информации объективны и доступны изучению. Они интенсивно изучаются. Собственно, определение этих законов, их точное описание, использование алгоритмов преобразования информации, в особенности алгоритмов управления, и составляет содержание кибернетики.

Здесь уместно заметить, что точное определение содержания и границ таких наук, как кибернетика, затруднительно, и поэтому вокруг них до сих пор не затихает дискуссия. Точное определение границ любой науки обычно можно дать только после того, как эта наука вполне оформится. Этого пока нельзя сказать о совсем ещё молодой науке — кибернетике. Кибернетика выросла на основе изучения конкретных процессов передачи сигналов, процессов управления и обобщения законов, по которым протекают эти процессы. По мере накопления и обобщения фактов, естественно, расширяется область применения уже изученных законов. Обилие приложений кибернетики иногда заставляет задавать вопрос: а что же не относится к кибернетике? Подобные вопросы вызваны, конечно, только новизной ситуации, так как аналогичный вопрос в отношении, например, математики никому не пришло бы в голову задать, хотя математика имеет не меньше областей применения, чем кибернетика.

Специалисты отдельных прикладных наук иногда отождествляют кибернетику со своей специальностью. Так, например, часто приходится слышать, что кибернетика — это теория автоматического регулирования (разумеется, сильно расширенная). Некоторые, увлекаясь наиболее эффектными перспективами, утверждают, что кибернетика — это наука о моделировании функций человеческого мозга. Но всё это не соответствует истине, а подобные определения оказываются очень ограниченными.

Вообще говоря, вряд ли попытки дать точное и строгое определение кибернетики, которое оказалось бы верным раз и навсегда, могут сейчас оказаться плодотворными. Однако водораздел между кибернетикой и «не кибернетикой» всегда нетрудно провести, если помнить, что интересы кибернетики лежат в области общих законов передачи информации, ее преобразования и использования для управления. Можно сказать, что одной из основных задач кибернетики являются поиски строго формализованных алгоритмов преобразования информации и реализация этих алгоритмов. Системы или устройства, имеющие дело с сигналами, воспринимающие, преобразующие, передающие, принимающие, хранящие, обрабатывающие или использующие информацию и работающие в соответствии с определенным алгоритмом, мы будем называть кибернетическими системами или устройствами.

Таким образом, электронная счетная машина является кибернетической машиной в отличие от паровой машины — машины энергетической. Энергетические и кибернетические системы чаще всего существуют и работают совместно. Автоматическая энергоподстанция, беспилотный самолет, автоматически регулируемый производственный процесс могут служить тому примерами. В живом организме также сочетаются энергетическая и кибернетическая системы. Энергетика и кибернетика идут рука об руку. И как энергия не может использоваться без управления ею, так и управление не может осуществляться помимо материального, физического процесса, без энергии, пусть даже и самых малых количествах. Однако специфика и закономерности этих двух областей явлений природы различны, и это различие нужно очень четко видеть. Понятие информации сложилось позже, чем понятие энергии. И законы работы кибернетических систем изучены ещё далеко недостаточно. В наши дни только закладываются основы их понимания. Широкое поле уже существующих применений и поистине необъятные перспективы развития кибернетики требуют быстрого движения вперед в познании законов кибернетики и их использовании. Одним из основных понятий кибернетики является понятие сигнала. Но разбор этого понятия — тема отдельной заметки, и её я отложу на потом. Заходите, читайте мой блог, и я уверен — вы найдёте много интересного!

Понятие информации в кибернетике

Информация (от лат. informatio — разъяснение, изложение) первоначально — сведения, передаваемые одними людьми другим людям устным, письменным или каким-либо другим способом (например, с помощью условных сигналов, с использованием технических средств и т.д.), а также сам процесс передачи или получения этих сведений.

В отечественной и зарубежной литературе предлагается много разных концепций (определений) информации:

1) информация как отраженное разнообразие,

2) информация как устранение неопределенности (энтропии),

3) информация как связь между управляющей и управляемой системами,

4) информация как преобразование сообщений,

5) информация как единство содержания и формы (например, мысль — содержание, а само слово, звук — форма),

6) информация — это мера упорядоченности, организации системы в ее связях с окружающей средой.

Информация всегда играла в жизни человечества очень важную роль. Однако в середины 20 в. в результате социального прогресса и бурного развития науки и техники роль информации неизмеримо возросла. Кроме того, происходит лавинообразное нарастание массы разнообразной информации, получившее название «информационного взрыва». В связи с этим возникла потребность в научном подходе к информации, выявлении её наиболее характерных свойств, что привело к двум принципиальным изменениям в трактовке понятия информации. Во-первых, оно было расширено и включило обмен сведениями не только между человеком и человеком, но также между человеком и автоматом, автоматом и автоматом; обмен сигналами в животном и растительном мире. Передачу признаков от клетки к клетке и от организма к организму также стали рассматривать как передачу информации. Во-вторых, была предложена количественная мера информации (работы К. Шеннона, А. Н. Колмогорова и др.), что привело к созданию информации теории.

Понятие информации в кибернетики уточняется в математических «теориях информации». Это теории статистической, комбинаторной, топологической, семантической информации.

Общее понятие информации должно непротиворечиво охватывать все определения информация, все виды информации. К сожалению, такого универсального понятия информации еще не разработано. Информация может быть структурной, застывшей, окостенелой. Информация может быть также функциональной, » актуальным управлением». Информация измеримая величина. Она измеряется в битах. Каковы свойства информации? Первое — способность управлять физическими, химическими, биологическими и социальными процессами. Там, где есть информация, действует управление, а там, где осуществляется управление, непременно наличествует и информация. Второе свойство информации — способность передаваться на расстоянии. Третье — способность информации подвергаться переработке. Четвертое — способность сохраняться в течение любых промежутков времени и изменяться во времени. Пятое — способность переходить из пассивной формы в активную. Информация существенно влияет на ускоренное развитие науки, систем управления, техники и различных отраслей народного хозяйства. Информация — неисчерпаемый ресурс общества. Информация — первооснова мира, всего сущего. Современным научным обобщением всех информационных процессов в природе и обществе явилась информациология — генерализованная наука о природе информации и законах информации.

Читайте также:  Лейкоциты в поле зрения в моче у беременных

Информация в кибернетике

В кибернетике (науке об управлении) понятие «информация» используется для описания процессов управления в сложных динамических системах (живых организмах или технических устройствах). Жизнедеятельность любого организма или нормальное функционирование технического устройства связано с процессами управления, благодаря которым поддерживаются в необходимых пределах значения его параметров. Процессы управления включают в себя получение, хранение, преобразование и передачу информации. В любом процессе управления всегда происходит взаимодействие двух объектов — управляющего и управляемого, которые соединены каналами прямой и обратной связи. По каналу прямой связи передаются управляющие сигналы, а по каналу обратной связи — информация о состоянии управляемого объекта. Рассмотрим в качестве примера регулирование температуры в помещении с использованием кондиционера. Управляющим объектом является человек, а управляемым — кондиционер. В помещении может быть размещен термометр, который сообщает человеку о температуре в помещении (канал обратной связи). При повышении или понижении температуры в помещении за определенные пределы человек включает кондиционер (работает канал прямой связи). Таким образом, температура в помещении поддерживается в определенном температурном интервале. Аналогично можно проанализировать работу человека (управляющий объект) за компьютером (управляемым объектом). Человек с помощью органов чувств (зрения и слуха) получает информацию о состоянии компьютера по каналу обратной связи с помощью устройств вывода информации (монитор, акустические колонки). Эта информация анализируется человеком, который принимает решения о тех или иных управляющих действиях, которые по каналу прямой связи с помощью устройств ввода информации (клавиатуры или мыши) передаются компьютеру. Определений информационных процессов (ИП) не многим меньше, чем определений информации. Уже само обилие таких определений служит убедительным свидетельством их недостатков, показывая их частный характер, ориентацию каждого из них на узкий круг задач. Процессом, в самом общем случае, называют ход, протекание какого-либо явления, последовательную смену его состояний. Искусственно воссоздаваемые процессы имеют утилитарное предназначение, потому понимаются как совокупность последовательных целенаправленных действий (в соответствии, например, с ДCТУ 2938-94. Системы обработки информации. Основные понятия. Термины и определения). Искусственная реализация процесса предполагает построение технологии, где последовательности операций процесса ставится в соответствие последовательность взаимоувязанных средств реализации этих операций (операция здесь понимается как отдельное элементарное (нерасчленимое) действие, отдельная законченная часть процесса). В силу ряда причин в данной статье рассматриваются не информационные технологии, а именно ИП. Во-первых, при разработке новой информационной технологии сначала нужно точно определить, какой именно ИП эта технология будет реализовывать. Во-вторых, поскольку технологиями считаются только искусственные реализации процессов, то далеко не все процессы реализованы в виде технологий. И, главное, в-третьих, различные технологии могут реализовывать один и тот же процесс при помощи различных средств. А поскольку множество средств реализации каждой операции процесса всегда открыто (без ограничений в принципе), то построить полную классификацию технологий, реализующих даже один процесс, невозможно. Более того, подобные классификации всегда непродуктивны, не способны дать ничего существенно нового, так как содержат комбинации только известных средств реализации операций. В то же время множество процессов, состоящих из счетного множества операций тоже счетно, т.е. при условии определения множества всех возможных операций построение полной классификации процессов является вполне разрешимой задачей. Для получения полной и продуктивной [1] классификации, содержащей не только хорошо известные, но и все возможные (мыслимые) ИП, необходимо опираться на инвариантные свойства (атрибуты) любых ИП. Исходными предпосылками для нахождения таких атрибутов. ИП служат, во-первых, неотрывность информации от субъектно-объектных отношений, и, во-вторых, то, что наиболее полный набор ИП реализован в самом субъекте (все искусственно созданные ИП только воспроизводят, дублируют некоторые ИП, выполняемые субъектом, именно субъект задает программы функционирования и управления искусственных систем). Поэтому для нахождения атрибутов, определяющих ИП, необходимо исследовать субъект и, в частности, его информационную деятельность.

Кибернетический подход к определению информации

Кибернетический подход к определению информации
Одним из интереснейших подходов к анализу феномена информации является современный кибернетический подход. Но хорошо известно, что одним из первых античных мыслителей и теоретиков, применивших термин кибернетика, был Платон. Идея Платона о связи искусства управления и философских, фундаментальных характеристик реальности была, по-видимому, найдена почти интуитивно.
Известно, что термин кибернетика применялся А.Ампером и социологами и не носил широкого философско-теоретического смысла. Сегодня данный философско-кибернетический подход, несмотря на его различную критику, имеет право на существование, так как он не исчерпал себя полностью, возможны его новые варианты.
Кибернетика, в первоначальном своём значении, как искусство управления, в 20 столетии сформировалась как междисциплинарное научное направление, изучающее процессы управления в сложных системах.15
К таким системам можно отнести системы различных уровней организации — биологической, социальной, социотехнической. С появлением в1948 году работы Н.Винера «Кибернетика или Управление и связь в животном и машине» идея кибернетического подхода получает свое распространение и свой критический анализ. Как известно, Винер во многом использовал уже сложившуюся теорию автоматического регулирования в системах с обратной связью. Теория автоматического регулирования сложилась в 19-20 веках и была отражена в трудах Максвелла, Вышнеградского, Ляпунова. Развивая далее основную центральную, содержательную идею, Винер, используя предположение Ампера, придал идеи кибернетики ещё более широкое философское звучание, более универсальный смысловой спектр значения, связывая в одно целое исследуемые проблемы коммуникации и управления в различных системах. Во многом философско-кибернетический подход выражает статистическую идею о том, что информация имеет вероятностную природу, информация есть функция вероятности.
Кибернетический подход позволил обозначить помимо традиционных аспектов сущностных сторон информации новый важный аспект, связанный с особой ролью информации в процессе управления системой. В результате применения данного подхода обозначилась общая кибернетическая модель, имеющая большое значение в процессе формирования более конкретных познавательных моделей.
Рассмотрение кибернетической эволюции систем с необходимостью затрагивает информационный аспект. Кибернетические модели информации, позволили выявить важные аспектыданного сложного феномена, в первую очередь важным выявленным аспектом является то, что всегда существует взаимосвязь между процессами управления и соответствующим информационным содержанием.
Кибернетическая методология имеет различные варианты реализации. Кибернетический способ анализа структурных взаимосвязей имеет различные варианты, не все из которых обязательно порождают научно состоятельные варианты. Но в целом кибернетический подход активизировал исследования закономерностей управления различными системами, в том числе и социальными. Возможность построения социальных проектов, основанных на законах информационно-кибернетических закономерностей, реализовалась во множестве различных вариантов и подвариантов.
Первоначальная кибернетическая модель оказалась лишь в ограниченной степени перспективной, но, безусловно, её достоинство и положительная сторона заключается в том, чтоона позволила акцентировать проблему информационной модели искусственного интеллекта.
Рассмотрим основные черты кибернетической модели информации. Первоначальное нестрогое смысловое значение термина «информация» в кибернетике имеет значение разнообразия, ограниченного разнообразия, в таком подходе информация понимается как мера устраняемой неопределённости, как мера вероятности событий, возникающих в процессе управления. Собственно для философии кибернетическая версия сущности информации имела, по сути дела, второстепенное значение на фоне разработки более широкой идеи «организующего управления» как объективно реальной атрибутивности форм бытия в целом или функционального отражения. Именно этим во многом объясняется определённый философский скепсис по отношению к роли и значению кибернетической методики выявления сущности информации в целом. Соответственно. В таком подходе: информация является средством, через которое осуществляется функция управления, организации реальных форм материи.
В этом отношении необходимо отметить, что идея информации отражает принцип, лежащий в основании всех методов «организующего управления» тесно взаимосвязана с системным подходом.
В начале своего творческого становления, в50-х годах 20-го столетия, кибернетика в основном рассматривалась с позиций определённых возможностей моделирования процессов управления. В дальнейшем термин «кибернетика» претерпел некоторые уточнения, стал применяться несколько иной термин ­«общая теория систем».
Необходимо при этом отметить, что общая теория систем сформировалась как математическая и теоретическая кибернетика, что существенным образом повлияло на характер её понимания и применения. В то же время, помимо термина «кибернетика» можно найти употребление термина компьютерная наука как прикладная кибернетика. Разработка в трудах А.И. Берга и В.М. Глушкова теоретической и математической кибернетики позволило сделать важный положительный шаг вперёд и в отечественной науке, в результате чего возникает возможность применения автоматизированных систем управления на практике. Большое значение сыграли труды талантливого советского математика А.Н.Колмогорова.
Теория информации, сформировавшаяся в силу необходимости решения практических задач теории связи, первоначально рассматривалась как раздел математики, исследующий процессы хранения, преобразования и передачи информации. Основой такого подхода является определенный способ измерения количества информации, установление основных границ возможностей систем передачи информации. Это далее определяет исходные принципы их разработки и практического воплощения. Ядром такой теории информации является установление свойства информационных мер и их приложение к анализу систем передачи информации.
Фиксируемое изменение говорит о том, что присутствует момент появления информации. Отсутствие изменения указывает на относительное отсутствие новой информации, либо на полное отсутствие информации. В самом широком смысле изменение и неизменность есть две диалектические стороны бытия и небытия информационной реальности.
Теория связи, интерпретируемая как теория информационной связи, должна быть применена для исследования информационных структур социума. Тем самым общефилософские исследования сложных социоинформационных структур будут способны выйти на новый уровень осмысления и понимания информационной природы социокультурных механизмов.
Действительно, многие свойства информации можно описать с помощью математических моделей, позволяющих установить важный аспект меры информации. Именно математическая модель позволяет во многом точно и определённо отразить характерные особенности информационной меры. Информационная мера может пониматься и на интуитивном уровне, но этого явно недостаточно для научной характеристики информации. И такой подход в определённом диапазоне практичен и целесообразен. Его недостатки начинают проявляться тогда, когда возникает потребность более широкого культурологического анализа происходящих информационных преобразований структуры современного общества.
Важность философского понимания целостной сущности информационного мировоззрения проявляется из самого простого анализа того факта, который известен как прецедент неадекватной идеологической и научной оценки перспектив позитивного развития кибернетики в СССР. Сам по себе данный факт показал следующую важную и существенную закономерность, которую нельзя не учитывать сегодня, заключающуюся в следующих двух взаимосвязанных положениях:
во-первых, полномерное и адекватное осознание возможностей информационного развития общества открывает новые перспективы социокультурного и технологического прогресса;
во-вторых, недооценка, недопонимание возможностей и перспектив развития новых областей информационного мировоззрения является негативным фактором, определяющим реальное отставание в темпах практического развития конкретных технологий, влияющих, в свою очередь, на темпы социального развития.
Формирование новых философско-теоретических моделей информационного пространства не всегда является сразу признанным и понятным для тех категорий ученых, которые не способны быстро перестраиваться на новые информационные категориально-семантические способы мышления.
Многие важные достижения кибернетики были учтены при развитии теории отражения, многие принципиально важные положения кибернетического анализа информации теория отражения выразила в структурной целостности основной своей направленности. Глубоким, по своему внутреннему смысловому потенциалу, является переход от изоморфной к гомоморфной логике рассмотрения структурно-информационной матрицы.
Концепция информации может быть построена на определяющем критерии разнообразия. Однообразие и разнообразие в своей взаимосвязи определяют структурную мерность информации, информационного пространства. Однообразие есть исходное информационное состояние, обладающее возможностью к дальнейшему изменению и преобразованию, трансформации в многообразие, придавая определённое множество состояний соответствующему информационному пространству. В этом отношении, следует заметить. Однообразие – разнообразие есть характеристики информации как реальной формы бытия, характеризующие её структуру. Соответственно. Определяя сущность информации через особенности её структурной организации, не появляется возможность выявить наиболее существенные признаки, полностью определяющие её сущность. Но в то же время, естественно, данные свойства выступают как важные признаки природы и строения информации в целом.
Рассматривая проблему структурной мерности информации, проявляется сопоставимость данных понятий – «структурная мерность» и «информация». Возникает вопрос: можно ли отождествить данные понятия?
С одной стороны, понятие «структурная мерность» является конкретизацией понятия «информация». Конкретный вид информации всегда обладает определённой структурной мерностью возникших взаимосвязей. С другой, структурная мерность взаимосвязей и есть информация. Информация есть структурная мерность взаимосвязей.
Содержательное относительное совпадение данных понятий вместе с тем позволяет разграничить их различие.
Структурная мерность взаимосвязей образует явление «информации» как целостного определённого явления, сложность этих взаимосвязей образует множественные варианты существующей информации.
Общая закономерность заключается в том, что
более многозначное отношение является более ёмким в силу увеличения мерности информационно-потенциальной структуры.
Чем более многозначным является отношение, тем в более значительной степени возрастает множественная структура информационного сообщения.
В таком подходе можно сформулировать следующее положение: теория информации есть теория структурной мерности различных форм организации, является теорией всеобщей структурно-мерной взаимосвязи.
Рассмотрим винеровское понимание идеи информации. Понимание идеи информации Винером является результатом исследующего размышления
с различных сторон данного явления. Рассматривая различные стороны сложной природы информации, он прибегает в данном отношении к
сравнению природной информации как своеобразного кода. Он пишет, что научное открытие состоит в интерпретации системы сущего.
Понимание «идеи информации» как называет её Винер, не было полным и системным. Вся кибернетика выросла на основании возведения одного из возможных способов понимания природы информации до степени системного основания, которое оказывается метафизичным по своим методологическим конструкциям.
Информационная ёмкость организационных взаимосвязей, порождающих систему устойчивых отношений проявляется как взаимосвязь организационной структуры и сохраняемой в ней информации. Информация есть коррелят организации и, действительно, является проявлением уровня организации. С другой стороны, увеличение степени организованности есть проявление увеличения количества информации.
Информационная организация системы это не то же самое, что организация информации. Информация может обладать и обязательно обладает определённой организацией, в зависимости от которой определяются её конкретные характеристики.
Для того, чтобы более конкретно определить организационную природу информации, введём термины «информорганизация»,«информорганизационные структуры».
Информация есть организационное явление, есть информорганизация. Информорганизационные структуры пронизывают всю структуру реальности. Информация, рассмотренная с точки зрения принципов организованности, упорядоченности, проявляет соответствующие характеристики. Информация есть организационное явление, есть результат и процесс возникновения определённых форм организации. Соответственно, может быть столько типов информации, сколько существует форм организации.
Теория информации, интерпретированная как теория организационных структур, может быть рассмотрена и как теория управления. Теория кибернетики вызвала мощное развитие прикладных и теоретических областей в теории управления, которые рассмотренны применительно к различным конкретным специальным объектам, дают возможность уточнить в деталях общую идею и схему, отражающую универсальную закономерность, заключающуюся в единстве информационно-организационных структур, которые посредством управления ими, действительно, проявляют информационные характеристики реальности.
Принцип управленческого рассмотрения природы информации, информационной сущности реальности есть проявление и продолжение принципа организационного понимания природы информации. Управление в этом случае рассматривается как условие и средство возникновения организационных форм существования организационных структур. Механизмы управления есть онтологическая сторона реального процесса, причинный элемент действия которого приводит к трансформации информационных структур.
Теория информации в этом смысле есть кибернетическая концепция взаимосвязи и взаимозависимости информационных и организационных сторон реальности. Попытка разработки и раскрытия феномена информации в рамках кибернетического подхода была изначально ограничена тем, что не были раскрыты собственные принципиальные существенные положения кибернетики как таковой. И достаточно удивительным то, что в работах, посвященных данной проблематике зачастую совсем не уделялось какого-либо серьёзного исследовательского анализа сущности кибернетики, рассматривая при этом феномен информации сам по себе.
Взаимосвязь теории управления и теории информации позволяет отметить феномен информации как меру структурной организации реальности. И такой подход может быть назван структурно-организационной концепцией информации.
Рассмотрение термина «информация» лишь как элемента, составляющего теорию управления, мешает полному философскому пониманию кибернетических закономерностей реальности. С другой стороны, в рамках теории информации высказывались опасения по поводу действительной опасности придания универсального смысла кибернетическим терминам, в том числе, и термину «информация».
Во многом ограничение в серьёзной философской литературе логического продолжения кибернетического понимания реальности привело к недопониманию общих, универсально-кибернетических закономерностей на более высоком теоретическом уровне.
Структурная организация объекта, структурно-кибернетическая организация реальности могут и должны быть важными характеристиками, выявление которых произошло именно благодаря выявлению общих организационно-информационных кибернетических закономерностей. Понятно, что недопустимо отождествлять феномен информации с феноменом структурности или с организацией объектов. Такое отождествление было бы слишком некорректным в силу того, что рассматриваемые
стороны при их действительном относительном совпадении, и взаимосвязях лишь в относительной степени оказываются идентичными.
Информация может быть рассмотрена как дизъюнктивная структура и можно говорить, что информация обладает дизъюнктивной структурной организацией. Дизъюнктивно импликативное умозаключение лежит в основе двоичной открытой структуры образования информации, где возможное следствие равновероятной строгой дизъюнкции может быть принято за единицу определённого количества информации, то естьза один структурный бит.
С другой стороны может быть выявлена ретроструктурная организация информационной реальности. Рассмотрение возможности ретроспективного изучения социально-исторической реальности в основном всегда базировалось на предположении того, чтов рамках современности существуют носители информации о прошлом. То есть существуют различные информационные носители, в которых определённым образом сохраняется информация о ранее существовавших объектах.
Рассматривая с универсальной точки зрения данный принцип, возникает возможность ретроспективного информационного изучения всей реальности. Существующий мир в процессе своего существования записывает информацию о своём прошлом. Прошлое не исчезает абсолютно, оно приобретает вид снятой, определённым образом записанной на материальных носителях в структуре их состояния информации, которая при определённых условиях может быть считана, проявлена.
Если существуют искусственные информационные носители, то можно предположить, что существуют и естественные информационные носители. В этом случае информация о прошлом реально существует и передаётся от одного временного состояния к
последующему.

Читайте также:  Коррекция зрения при не допуске к работе

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8155 — | 6643 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Что такое информация с точки зрения кибернетики

даёт И. относительно вещественных переменных a и b. Равенство

даёт меньшую И. [так как из (1) следует (2), но эти равенства не равносильны]. Наконец, равенство

равносильное (1), даёт ту же И., то есть (1) и (3) ‒ это различные формы задания одной и той же И.

Пример 3. Результаты произведённых с ошибками независимых измерений какой-либо физической величины дают И. о её точном значении. Увеличение числа наблюдений увеличивает эту И.

Пример 3 а. Среднее арифметическое результатов наблюдений также содержит некоторую И. относительно рассматриваемой величины. Как показывает математическая статистика, в случае нормального распределения вероятностей ошибок с известной дисперсией среднее арифметическое содержит всю И.

Пример 4. Пусть результатом некоторого измерения является случайная величина X . При передаче по некоторому каналу связи X искажается, в результате чего на приёмном конце получают величину Y = X + q, где q не зависит от X (в смысле теории вероятностей). «Выход» Y даёт И. о «входе» X ; причём естественно ожидать, что эта И. тем меньше, чем больше дисперсия случайной ошибки q.

В каждом из приведённых примеров данные сравнивались по большей или меньшей полноте содержащейся в них И. В примерах 1‒3 смысл такого сравнения ясен и сводится к анализу равносильности или неравносильности некоторых соотношений. В примерах 3 а и 4 этот смысл требует уточнения. Это уточнение даётся, соответственно, математической статистикой и теорией И. (для которых эти примеры являются типичными).

В основе теории информации лежит предложенный в 1948 американским учёным К. Шенноном способ измерения количества И., содержащейся в одном случайном объекте (событии, величине, функции и т. п.) относительно другого случайного объекта. Этот способ приводит к выражению количества И. числом. Положение можно лучше объяснить в простейшей обстановке, когда рассматриваемые случайные объекты являются случайными величинами, принимающими лишь конечное число значений. Пусть X ‒ случайная величина, принимающая значения x 1 , x 2 . x n с вероятностями p 1 , p 2 . p n , а Y ‒ случайная величина, принимающая значения y 1 , y 2 . y m с вероятностями q 1 , q 2 . q m . Тогда И. I ( X , Y ) относительно Y , содержащаяся в X , определяется формулой

где p ij ‒ вероятность совмещения событий X = x i и Y = y j и логарифмы берутся по основанию 2. И. I ( X , Y ) обладает рядом свойств, которые естественно требовать от меры количества И. Так, всегда I ( X , Y ) ³ 0 и равенство I ( X , Y ) = 0 возможно тогда и только тогда, когда p ij = p i q j при всех i и j, т. е. когда случайные величины X и Y независимы. Далее, всегда I ( X , Y ) £ I ( Y , Y ) и равенство возможно только в случае, когда Y есть функция от X (например, Y = X 2 и т. д.). Кроме того, имеет место равенство I ( X , Y ) = I ( Y , X ).

носит название энтропии случайной величины X . Понятие энтропии относится к числу основных понятий теории И. Количество И. и энтропия связаны соотношением

I ( X , Y ) = H ( X ) + H ( Y ) ‒ H ( X , Y ),

где H ( X , Y ) ‒ энтропия пары ( X , Y ), т. е.

Величина энтропии указывает среднее число двоичных знаков (см. Двоичные единицы ), необходимое для различения (или записи) возможных значений случайной величины (подробнее см. Кодирование , Энтропия ). Это обстоятельство позволяет понять роль количества И. (4) при «хранении» И. в запоминающих устройствах. Если случайные величины X и Y независимы, то для записи значения X требуется в среднем H ( X ) двоичных знаков, для значения Y требуется H ( Y ) двоичных знаков, а для пары ( X , Y ) требуется Н ( Х ) + H ( Y ) двоичных знаков. Если же случайные величины X и Y зависимы, то среднее число двоичных знаков, необходимое для записи пары ( X , Y ), оказывается меньшим суммы Н ( Х ) + H ( Y ), так как

H ( X , Y ) = H ( X ) + H ( Y ) ‒ I ( X , Y ).

С помощью значительно более глубоких теорем выясняется роль количества И. (4) в вопросах передачи И. по каналам связи. Основная информационная характеристика каналов, так называемая пропускная способность (или ёмкость), определяется через понятие «И.» (подробнее см. Канал ).

Если X и Y имеют совместную плотность p ( x , y ), то

где буквами р и q обозначены плотности вероятности Х и Y соответственно. При этом энтропии Н ( X ) и Н ( Y ) не существуют, но имеет место формула, аналогичная (5),

I ( X , Y ) = h ( X ) + h ( Y ) ‒ h ( X , Y ),

дифференциальная энтропия X [ h ( Y ) и h ( X , Y ) определяется подобным же образом].

Пример 5. Пусть в условиях примера 4 случайные величины X и q имеют нормальное распределение вероятностей с нулевыми средними значениями и дисперсиями, равными соответственно s 2 х и s 2 q . Тогда, как можно подсчитать по формулам (6) или (7):

Таким образом, количество И. в «принятом сигнале» Y относительно «переданного сигнала» X стремится к нулю при возрастании уровня «помех» q (т. е. при s 2 q ® ¥) и неограниченно возрастает при исчезающе малом влиянии «помех» (т. е. при s 2 q ® 0).

Читайте также:  Операция на глаза при минусовом зрении

Особенный интерес для теории связи представляет случай, когда в обстановке примеров 4 и 5 случайные величины X и Y заменяются случайными функциями (или, как говорят, случайными процессами) X ( t ) и Y ( t ), которые описывают изменение некоторой величины на входе и на выходе передающего устройства. Количество И. в Y ( t ) относительно X ( t ) при заданном уровне помех («шумов», по акустической терминологии) q( t ) может служить критерием качества самого этого устройства (см. Сигнал , Шеннона теорема ).

В задачах математической статистики также пользуются понятием И. (сравни примеры 3 и 3а). Однако как по своему формальному определению, так и по своему назначению оно отличается от вышеприведённого (из теории И.). Статистика имеет дело с большим числом результатов наблюдений и заменяет обычно их полное перечисление указанием некоторых сводных характеристик. Иногда при такой замене происходит потеря И., но при некоторых условиях сводные характеристики содержат всю И., содержащуюся в полных данных (разъяснение смысла этого высказывания даётся в конце примера 6). Понятие И. в статистике было введено английским статистиком Р. Фишером в 1921.

Пример 6. Пусть X 1 , X 2 , . X n , ‒ результаты n независимых наблюдений некоторой величины, распределённые по нормальному закону с плотностью вероятности

где параметры a и s 2 (среднее и дисперсия) неизвестны и должны быть оценены по результатам наблюдений. Достаточными статистиками (т. е. функциями от результатов наблюдении, содержащими всю И. о неизвестных параметрах) в этом примере являются среднее арифметическое

и так называемая эмпирическая дисперсия

Если параметр s 2 известен, то достаточной статистикой будет только X (сравни пример 3 а выше).

Смысл выражения «вся И.» может быть пояснён следующим образом. Пусть имеется какая-либо функция неизвестных параметров j = j ( a , s 2 ) и пусть

j* = j*( X 1 , X 2 , . X n )

‒ какая-либо её оценка, лишённая систематической ошибки. Пусть качество оценки (её точность) измеряется (как это обычно делается в задачах математической статистики) дисперсией разности j* ‒ j. Тогда существует другая оценка j**, зависящая не от отдельных величин X i , а только от сводных характеристик X и s 2 , не худшая (в смысле упомянутого критерия), чем j*. Р. Фишером была предложена также мера (среднего) количества И. относительно неизвестного параметра, содержащейся в одном наблюдении. Смысл этого понятия раскрывается в теории статистических оценок.

Лит.: Крамер Г., Математические методы статистики, пер. с англ., М., 1948; Ван-дер-Варден Б. Л., Математическая статистика, пер. с нем., М., 1960; Кульбак С., Теория информации и статистика, пер. с англ., М., 1967.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Что значит «информация (в кибернетике)»

Большая Советская Энциклопедия

Информация в кибернетике. Естественнонаучное понимание И. основано на двух определениях этого понятия, предназначенных для различных целей (для информации теории , иначе называемой статистической теорией связи, и теории статистических оценок ). К ним можно присоединить и третье (находящееся в стадии изучения), связанное с понятием сложности алгоритмов. Центральное положение понятия И. в кибернетике объясняется тем, что кибернетика (ограничивая и уточняя интуитивное представление об И.) изучает машины и живые организмы с точки зрения их способности воспринимать определённую И., сохранять её в «памяти», передавать по «каналам связи» и перерабатывать её в «сигналы», направляющие их деятельность в соответствующую сторону. ═В некоторых случаях возможность сравнения различных групп данных по содержащейся в них И. столь же естественна, как возможность сравнения плоских фигур по их «площади»; независимо от способа измерения площадей можно сказать, что фигура A имеет не большую площадь, чем B, если A может быть целиком помещена в В (сравни примеры 1≈3 ниже). Более глубокий факт ≈ возможность выразить площадь числом и на этой основе сравнить между собой фигуры произвольной формы ≈ является результатом развитой математической теории. Подобно этому, фундаментальным результатом теории И. является утверждение о том, что в определённых весьма широких условиях можно пренебречь качественными особенностями И. и выразить её количество числом. Только этим числом определяются возможности передачи И. по каналам связи и её хранения в запоминающих устройствах. Пример

В классической механике знание положения и скорости частицы, движущейся в силовом поле, в данный момент времени даёт И. о её положении в любой будущий момент времени, притом полную в том смысле, что это положение может быть предсказано точно. Знание энергии частицы даёт И., но, очевидно, неполную. Пример

даёт И. относительно вещественных переменных a и b. Равенство

даёт меньшую И. [так как из (1) следует (2), но эти равенства не равносильны]. Наконец, равенство

равносильное (1), даёт ту же И., то есть (1) и (3) ≈ это различные формы задания одной и той же И.

Результаты произведённых с ошибками независимых измерений какой-либо физической величины дают И. о её точном значении. Увеличение числа наблюдений увеличивает эту И.

Пример 3 а. Среднее арифметическое результатов наблюдений также содержит некоторую И. относительно рассматриваемой величины. Как показывает математическая статистика, в случае нормального распределения вероятностей ошибок с известной дисперсией среднее арифметическое содержит всю И.

Пусть результатом некоторого измерения является случайная величина X. При передаче по некоторому каналу связи X искажается, в результате чего на приёмном конце получают величину Y = X + q, где q не зависит от X (в смысле теории вероятностей). «Выход» Y даёт И. о «входе» X; причём естественно ожидать, что эта И. тем меньше, чем больше дисперсия случайной ошибки q.

В каждом из приведённых примеров данные сравнивались по большей или меньшей полноте содержащейся в них И. В примерах 1≈3 смысл такого сравнения ясен и сводится к анализу равносильности или неравносильности некоторых соотношений. В примерах 3 а и 4 этот смысл требует уточнения. Это уточнение даётся, соответственно, математической статистикой и теорией И. (для которых эти примеры являются типичными).

В основе теории информации лежит предложенный в 1948 американским учёным К. Шенноном способ измерения количества И., содержащейся в одном случайном объекте (событии, величине, функции и т. п.) относительно другого случайного объекта. Этот способ приводит к выражению количества И. числом. Положение можно лучше объяснить в простейшей обстановке, когда рассматриваемые случайные объекты являются случайными величинами, принимающими лишь конечное число значений. Пусть X ≈ случайная величина, принимающая значения x1, x2. xn с вероятностями p1, p2. pn, а Y ≈ случайная величина, принимающая значения y1, y2. ymс вероятностями q1, q2. qm. Тогда И. I (X,Y) относительно Y, содержащаяся в X, определяется формулой

где pij ≈ вероятность совмещения событий X = xi и Y = yj и логарифмы берутся по основанию 2. И. I (X, Y) обладает рядом свойств, которые естественно требовать от меры количества И. Так, всегда I (X, Y) ³ 0 и равенство I (X, Y) = 0 возможно тогда и только тогда, когда pij = piqj при всех i и j, т. е. когда случайные величины X и Y независимы. Далее, всегда I (X, Y) £ I (Y, Y) и равенство возможно только в случае, когда Y есть функция от X (например, Y = X2 и т. д.). Кроме того, имеет место равенство I (X, Y) = I (Y, X). Величина

носит название энтропии случайной величины X. Понятие энтропии относится к числу основных понятий теории И. Количество И. и энтропия связаны соотношением

где H (X, Y) ≈ энтропия пары (X, Y), т. е.

Величина энтропии указывает среднее число двоичных знаков (см. Двоичные единицы ), необходимое для различения (или записи) возможных значений случайной величины (подробнее см. Кодирование , Энтропия ). Это обстоятельство позволяет понять роль количества И. (4) при «хранении» И. в запоминающих устройствах. Если случайные величины X и Y независимы, то для записи значения X требуется в среднем H (X) двоичных знаков, для значения Y требуется H (Y) двоичных знаков, а для пары (X, Y) требуется Н (Х) + H (Y) двоичных знаков. Если же случайные величины X и Y зависимы, то среднее число двоичных знаков, необходимое для записи пары (X, Y), оказывается меньшим суммы Н (Х) + H (Y), так как

H (X, Y) = H (X) + H (Y) ≈ I (X, Y).

С помощью значительно более глубоких теорем выясняется роль количества И. (4) в вопросах передачи И. по каналам связи. Основная информационная характеристика каналов, так называемая пропускная способность (или ёмкость), определяется через понятие «И.» (подробнее см. Канал ).

Если X и Y имеют совместную плотность p(x, y), то

где буквами р и q обозначены плотности вероятности Х и Y соответственно. При этом энтропии Н (X) и Н (Y) не существуют, но имеет место формула, аналогичная (5),

дифференциальная энтропия X [h (Y) и h (X, Y) определяется подобным же образом].

Пусть в условиях примера 4 случайные величины X и q имеют нормальное распределение вероятностей с нулевыми средними значениями и дисперсиями, равными соответственно s2х и s2q. Тогда, как можно подсчитать по формулам (6) или (7):

Таким образом, количество И. в «принятом сигнале» Y относительно «переданного сигнала» X стремится к нулю при возрастании уровня «помех» q (т. е. при s2q╝ ¥) и неограниченно возрастает при исчезающе малом влиянии «помех» (т. е. при s2q ╝ 0).

Особенный интерес для теории связи представляет случай, когда в обстановке примеров 4 и 5 случайные величины X и Y заменяются случайными функциями (или, как говорят, случайными процессами) X (t) и Y (t), которые описывают изменение некоторой величины на входе и на выходе передающего устройства. Количество И. в Y (t) относительно X (t) при заданном уровне помех («шумов», по акустической терминологии) q(t) может служить критерием качества самого этого устройства (см. Сигнал , Шеннона теорема ).

В задачах математической статистики также пользуются понятием И. (сравни примеры 3 и 3а). Однако как по своему формальному определению, так и по своему назначению оно отличается от вышеприведённого (из теории И.). Статистика имеет дело с большим числом результатов наблюдений и заменяет обычно их полное перечисление указанием некоторых сводных характеристик. Иногда при такой замене происходит потеря И., но при некоторых условиях сводные характеристики содержат всю И., содержащуюся в полных данных (разъяснение смысла этого высказывания даётся в конце примера 6). Понятие И. в статистике было введено английским статистиком Р. Фишером в 1921.

Пусть X1, X2, . Xn, ≈ результаты n независимых наблюдений некоторой величины, распределённые по нормальному закону с плотностью вероятности

где параметры a и s2 (среднее и дисперсия) неизвестны и должны быть оценены по результатам наблюдений. Достаточными статистиками (т. е. функциями от результатов наблюдении, содержащими всю И. о неизвестных параметрах) в этом примере являются среднее арифметическое

и так называемая эмпирическая дисперсия

Если параметр s2 известен, то достаточной статистикой будет только X (сравни пример 3 а выше).

Смысл выражения «вся И.» может быть пояснён следующим образом. Пусть имеется какая-либо функция неизвестных параметров j = j (a, s2) и пусть

≈ какая-либо её оценка, лишённая систематической ошибки. Пусть качество оценки (её точность) измеряется (как это обычно делается в задачах математической статистики) дисперсией разности j* ≈ j. Тогда существует другая оценка j**, зависящая не от отдельных величин Xi, а только от сводных характеристик X и s2, не худшая (в смысле упомянутого критерия), чем j*. Р. Фишером была предложена также мера (среднего) количества И. относительно неизвестного параметра, содержащейся в одном наблюдении. Смысл этого понятия раскрывается в теории статистических оценок.

Лит.: Крамер Г., Математические методы статистики, пер. с англ., М., 1948; Ван-дер-Варден Б. Л., Математическая статистика, пер. с нем., М., 1960; Кульбак С., Теория информации и статистика, пер. с англ., М., 196

Транслитерация: informatsiya (v kibernetike)
Задом наперед читается как: )екитенребик в( яицамрофни
Информация (в кибернетике) состоит из 24 букв

Источники:
  • http://itpool.ru/blog/rasshiryaem-oblast-zreniya-chto-takoe-informatsiya.html
  • http://biofile.ru/bio/21223.html
  • http://studbooks.net/2111777/informatika/informatsiya_kibernetike
  • http://studopedia.ru/14_78948_kiberneticheskiy-podhod-k-opredeleniyu-informatsii.html
  • http://dic.academic.ru/dic.nsf/bse/90916/%D0%98%D0%BD%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D1%8F
  • http://xn--b1algemdcsb.xn--p1ai/wd/%D0%B8%D0%BD%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D1%8F%20(%D0%B2%20%D0%BA%D0%B8%D0%B1%D0%B5%D1%80%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B5)