Меню Рубрики

Что такое давление с точки зрения мкт

Молекулярно-кинетическая теория газов рассматривает идеальный газ:

а) молекулы не притягиваются и не отталкиваются;

б) молекулы взаимодействуют только при упругих столкновениях;

в) молекулы представляют собой материальные точки, т.е. обладают массой, но не имеют объёма.

В качестве критерия идеальности газов принято считать соотношение α/L1, где α и L соответственно линейные масштабы молекул и расстояний между ними. Все реальные газы при высоких температурах и малых давлениях можно практически считать как идеальные газы.

Давление – с точки зрения молекулярно-кинетической теории есть средний результат ударов молекул газа, находящихся в непрерывном хаотическом движении, о стенку сосуда, в котором заключен газ.

Давление измеряется в паскалях по имени французского учёного и математика

Блеза Паскаля (1623-1662). 1Па = 1. 1МПа = 10 6 Па.

Различают избыточное и абсолютное давление. Избыточное давление (Ри)– разность между давлением жидкости или газа и давлением окружающей среды.

Абсолютное давление (Р) – давление, отсчитываемое от абсолютного нуля давления или от абсолютного вакуума. Это давление является термодинамическим параметром состояния.

Температура – физическая величина, характеризующая интенсивность теплового движения молекул и пропорциональная средней кинетической энергии поступательного движения молекул.

Термодинамическая температура Т всегда положительна. При температуре абсолютного нуля (Т=0) тепловые движения прекращаются, и эта температура является началом отсчета абсолютной температуры.

Т = t + 273,15 .

Ro= 8,314 универсальная газовая постоянная.

Удельный объем – отношение объема вещества к его массе , .

Абсолютное давление p, удельный объем v и абсолютная температура Т однозначно определяют термодинамическое состояние однофазного тела и называются термодинамическими параметрами состояния.

Уравнение состояния идеального газа Клапейрона – Менделеева:

(1.1),

где р – давление, Па,

удельный объем(отношение объема вещества к его массе),

Rμ= газовая постоянная данного газа,,

Например, для кислорода ==. (1.2)

Уравнение состояния содержит три параметра: давление, удельный объём и температуру. Два из них независимы, а третий определяется по уравнению (1.1).

Для любого процесса 1-2:, p1v1=RμT1,

p2v2=RμT2.

Разделив левую часть первого уравнения на левую часть второго уравнения, а правую часть первого уравнения на правую часть второго уравнения и сократив Rμ, получим:

(1.3)

1.4. Смесь идеальных газов

Под газовой смесью понимается смесь отдельных газов, не вступающих между собой ни в какие химические реакции. Каждый газ (компонент) в смеси независимо от других газов полностью сохраняет все свои свойства и ведет себя так, как если бы он один занимал весь объем смеси.

Парциальное давление – это давление, которое имел бы каждый газ, входящий в состав смеси, если бы этот газ находился один в том же количестве, в том же объеме и при той же температуре, что и в смеси.

Закону Дальтона: Общее давление смеси газов равно сумме парциальных давлений отдельных газов, составляющих смесь.

Состав смеси задается долями объемными r, r1= ;r2= ;

массовыми g g1= и мольными r1 : r1 = ;r2 = ; .

где V1; V2; Vсм – объемы компонентов и смеси; m1; m2; mсм – массы компонентов и смеси; ν1; ν2; νсм – количество вещества (киломолей) компонентов и смеси.

Для идеального газа по закону Дальтона объёмные доли равны мольным:

Молярная масса смеси: μсм= μ1r1+ μ2r2. μсм=

где: μ1 , μ2, μсм – молярные массы компонентов и смеси.

Связь между объемными и массовыми долями: g1= r1;g2= r2.

Что такое давление с точки зрения мкт

59. Давление газа с точки зрения молекулярно-кинетической теории

59. Давление газа с точки зрения молекулярно-кинетической теории

1. Молекулы взаимодействуют друг с другом посредством моле-кулярных сил. На далеких расстояниях — это силы притяжения, убывающие с увеличением расстояния, на близких — силы отталкивания, быстро возрастающие при сближении молекул. Расстояние между центрами сблизившихся молекул, на котором силы притяжения переходят в силы отталкивания, принимается за диаметр молекулы. В газах при нормальных условиях средние расстояния между молекулами еще велики по сравнению с их диаметрами. На таких расстояниях молекулярные силы очень слабы и не играют существенной роли. Молекулярные силы проявляются лишь на близких расстояниях порядка диаметров молекул. Под действием этих сил скорости сблизившихся молекул претерпевают значительные изменения как по величине, так и но направлению. Взаимодействия молекул на близких расстояниях называют столкновениями. Между двумя последовательными столкновениями молекула газа движется практически свободно, т. е. прямолинейно и равномерно. При каждом столкновении молекула газа почти мгновенно меняет направление своего движения, а затем движется с новой скоростью опять прямолинейно и равномерно, пока не произойдет следующее столкновение. Если газ в целом находится в покое (например, заключен в закрытом сосуде), то в результате столкновений устанавливается хаотическое движение, в котором все направления движения молекул равновероятны. Оно называется тепловым движением. Чем более разрежен газ, тем длиннее средний путь, проходимый молекулой между двумя последовательными столкно-вениями. Для достаточно разреженного газа, заключенного в сосуд, можно в первом приближении пренебречь размерами молекул и столкновениями их друг с другом. Надо учесть только столкновения молекул со стенками сосуда, в который газ заключен. В этом при-ближении молекулы газа могут рассматриваться как материальные точки, не взаимодействующие между собой и движущиеся прямолинейно и равномерно между каждыми двумя последовательными столк-новениями со стенками сосуда. Такая простейшая модель приводит к законам идеальных газов. Чтобы показать это, надо выяснить моле-кулярный смысл давления, температуры и внутренней энергии газа.

2. Давление газа на стенку сосуда есть результат ударов мапе-кул газа об эту стенку. При каждом ударе молекула газа действует на стенку с определенной (с макроскопической точки зрения бесконечно малой) силой. Обратно направленная сила, с которой действует на молекулу стенка сосуда, заставляет молекулу отражаться от стенки. Если бы в сосуде содержалось всего несколько молекул, го пх удары следовали бы друг за другом редко и беспорядочно, п нельзя было бы говорить ни о какой регулярной силе давления, действующей на стенку. Мы имели бы дело с отдельными практически мгновенными бесконечно малыми толчками, которым время от времени подвергалась бы стенка. Если же число молекул в сосуде очень велико, то будет велико и числе ударов их о стенку сосуда. Удары станут следовать непрерывно друг за другом. Одновременно о стенку сосуда будет ударяться громадное количество молекул. Бесконечно малые силы отдельных ударов складываются в конечную и почти постоянную силу, действующую на стенку. Эта сила, усредненная по времени, и есть давление газа, с которым имеет дело макроскопическая физика.

3. Вычислим давление газа на стенку сосуда. Пусть газ заключен в закрытый сосуд, и все молекулы одинаковы. Вообще говоря, они дви-жутся с различными скоростями, отличающимися друг от друга как по величине, так и по направлению. Разделим все молекулы на группы так, чтобы молекулы одной и той же группы в рассматриваемый момент времени имели приблизительно одинаковые по величине и направлению скорости. Скорость молекул i-й группы обозначим Vi, а число таких молекул в единице объема — /7,. Возьмем на стенке сосуда малую площадку о (рис. 43). Если молекулы движутся по направлению к площадке о, то они могут столкнуться с ней. Если же они движутся от площадки, то столкновений не будет. Предположим, что молекулы г-й группы движутся ио направлению к площадке а, и подсчитаем число г; молекул такой группы, ударяющихся об эту площадку за малое время dt. Построим на площадке а, как на основании, косой цилиндр с обра-зующими V >
Zi = atiiVix dt.

Дальнейший ход вычислений зависит от характера взаимодействия ударяющихся молекул со стенкой. Обычно при вычислениях считают, что стенка гладкая, а молекулы при ударе отражаются от нее зеркально, т. е. по законам удара идеально упругих шаров: абсолютная величина скорости при отражении не изменяется, угол падения равен углу отражения. Затем доказывается, что эти предположения не являются существенными. Однако в действительности стенка сосуда для ударяющейся молекулы не может быть идеальным зеркалом — ведь она сама состоит из молекул. Благодаря этому молекулы i-й группы после отражения будут иметь, вообще говоря, самые разнообразные по величине и направлению скорости, направленные от стенки, и распределятся по различным скоростным группам. Поэтому мы проведем дальнейшие вычисления, не вводя никаких специальных предположений относительно законов отражения молекул от стенки сосуда. Единственное предположение, которое будет и пользовано в вычислениях, состоит в том, что при отражении от стенки молекула в среднем не теряет и не приобретает кинетическую энергию. В дальнейшем будет показано, что это предположение означает, что температура газа должна быть равна температуре стенки. Для целей вычисления процесс взаимодействия молекулы со стенкой удобно мысленно разбить на два этапа. На первом этапе молекула замедляется и останавливается, как бы прилипая к стенке. Иа втором этапе молекула отталкивается стенкой, ускоряется и отскакивает от нее. Вычислим сначала силу F, которая действовала бы на площадку о со стороны газа, если бы весь процесс взаимодействия молекул газа со стенкой ограничивался только первым этапом, т. е. в предположении, что после ударов молекулы газа как бы прилипают к стенке. Молекулы i-ii группы, ударившиеся о площадку о за время dt, до удара обладали количеством движения г,р; == — atiiVixP > 0), т.е.

К силе F] следует прибавить силу F, которая действует на площадку о на втором этапе. Сила F, вполне аналогична силе отдачи, испытываемой орудием при выстреле. Роль снаряда играют молекулы, летящие от площадки о, т. е. молекулы, для которых vix а с неи и Давление газа Р.

Однако столкновения вносят качественные изменения в физическую интерпретацию давления Р. Пока не было столкновений, молекулы газа совершенно не взаимодействовали друг с другом. Величина Р имела только один смысл: она давала давление газа иа стенку сосуда. При наличии столкновений появляется силовое взаимодействие между макроскопическими частями газа. Роль стенки для любой макроскопической части газа может играть граничащая с ней другая макроскопическая часть того же газа. В этих условиях величина Р имеет также смысл внутреннего давления, посредством которого осуществляется силовое взаимодействие между примыкающими друг к другу макроскопическими частями газа. Именно такой смысл имеет давление Р в гидродинамике и аэродинамике.

Читайте также:  С какого расстояния проверить зрение по таблице а4

5. Формулы (59.4) и (59.5) применимы как к нерелятпвистским,

так и к релятивистским движениям молекул. В случае нереляти-

вистских движений масса молекулы т может считаться постоянной.

§ eoj СКОРОСТИ ТЕПЛОВОГО ДВИЖЕНИЯ ГАЗОВЫХ МОЛЕКУЛ 193

Полагая в формулах (59.4) и (59.5) р = mv, получим для этого случая

При выводе этих формул молекулы рассматривались как бес-структурные материальные точки. Не принималось во внимание вращение молекул, а также внутримолекулярное движение. При столкновениях могут меняться скорости вращения молекул. Молекула может перейти в возбужденное состояние, или из возбужденного состояния вернуться в нормальное. Но все эти процессы не играют роли, когда речь идет о вычислении давления газа. Существенно только изменение поступательного количества движения молекулы при столкновениях ее со стенкой. Оно равно массе молекулы, умноженной на изменение скорости ее центра масс. Поэтому формулы (59.6) и (59.7) остаются в силе. Надо только понимать под v скорость поступательного движения молекулы (точнее, ее центра масс). Таким образом, формуле (59.7) можно придать вид

где (/inner) — среднее значение суммы кинетических энергий по-ступательного движения всех молекул газа. При столкновениях энергии вращательного и внутримолекулярного движений могут переходить в энергию поступательного движения и наоборот. Однако в установившемся состоянии среднее значение величины ЕтсТ остается неизменным.

Формула (59.8), как ясно из ее вывода, справедлива не только для однородного газа, но и для смеси различных газов. В этом случае под ЕПОСТ по-прежнему следует понимать сумму кинетических энергий поступательного движения молекул всех газов, содержащихся в сосуде. Из вывода ясно также, что для нашей модели газа, состоящей из невзаимодействующих молекул, справедлив закон Дальтона: давление смеси газов равно сумме парциальных давлений этих газов.

Автор: Диков Александр Дата: 2010-05-17 01:08:18 Просмотров: 7636

Репетиторы, математика, русский язык, физика, сдать ЕГЭ, ЕГЭ 2012, тестирование ЕГЭ, ответы по ЕГЭ, репетитор, карта сайта,

Все права защищены и принадлежат авторам размещающих материалы на сайте. Данный сайт ни какой ответственности за размещенный материал не несет. Копирование материалов возможна только с указанием URL ссылки на исходный материал.

Давление газа с точки зрения молекулярно-кинетической теории. Молекулярно-кинетический смысл абсолютной температуры

Давление газа с точки зрения молекулярно-кинетической теории.

Давление газа на стенку сосуда есть результат ударов мапе-кул газа об эту стенку. При каждом ударе молекула газа действует на стенку с определенной (с макроскопической точки зрения бесконечно малой) силой. Обратно направленная сила, с которой действует на молекулу стенка сосуда, заставляет молекулу отражаться от стенки. Если бы в сосуде содержалось всего несколько молекул, го пх удары следовали бы друг за другом редко и беспорядочно, п нельзя было бы говорить ни о какой регулярной силе давления, действующей на стенку. Мы имели бы дело с отдельными практически мгновенными бесконечно малыми толчками, которым время от времени подвергалась бы стенка. Если же число молекул в сосуде очень велико, то будет велико и числе ударов их о стенку сосуда. Удары станут следовать непрерывно друг за другом. Одновременно о стенку сосуда будет ударяться громадное количество молекул. Бесконечно малые силы отдельных ударов складываются в конечную и почти постоянную силу, действующую на стенку. Эта сила, усредненная по времени, и есть давление газа, с которым имеет дело макроскопическая физика.

При своем движении молекулы газа ударяются о стенки сосуда, в котором находится газ, создавая тем самым давление газа на стенки. Если газ находится в равновесии, то все направляющие движения молекул равновероятны.

Пусть в единице объема содержится n0 молекул. При абсолютно упругом ударе молекулы об стенку ее импульс изменяетмся на 2m0v. Ясно, что за время t до стенки долетят и упруго отразятся от нее все молекулы, находящиеся внутри параллелепипеда с основанием S и высотой vt.

Таких молекул будет: n = (1/6) n0 S v t ; следовательно общее изменение импульса молекул, долетевших за время t до стенки и упруго-отразившихся от нее будет: 2m0 v n = (1/3) n0 m0 v (ст.2) S t ; Это изменение импульса равно импульсу силы, действующей со стороны стенки на молекулы, а следовательно, согласно третьему закону Нбютона со стороны молекул на стенки: (1/3) n0 m0 v (ст.2) S t = F t ; F = (1/3) m0 v (ст.2) n0 S ; P = (1/3) n0 m0 v (ст.2) — основное уравнение.

Термодинамическая температура с молекулярно-кинетической точки зрения — физическая величина, характеризующая интенсивность хаотического, теплового движения всей совокупности частиц системы и пропорциональная средней кинетической энергии поступательного движения одной частицы.

Связь между кинетической энергией, массой и скоростью выражаестя следующей формулой:

Таким образом частицы одинаковой массы и имеющие одинаковую скорость имеют и одинаковую температуру.

Средняя кинетическая энергия частицы связана с термодинамической температурой постоянной Больцмана:

kB = 1.380 6505(24) × 10−23 Дж/K — постоянная Больцмана

T — термодинамическая температура, К

Абсолютная температура – есть величина, пропорциональная средней энергии поступательного движения молекул.

Молекулярно-кинетический смысл давления

Читайте также:

  1. Административный процесс можно рассматривать в широком управленческом смысле и в узком юрисдикционном смысле.
  2. Альбер Камю(1913 — 1960) сделал главной проблемой своей экзистенциональной философии проблему смысла жизни.
  3. В общем смысле под этикой управления понимается свод моральных принципов и ценностей, направляющих поведение индивида или группы индивидов.
  4. Вероятностный смысл математического ожидания
  5. Владение в экономическом и юридическом смысле
  6. Вопрос 3. Процесс группового давления.
  7. Геометрический смысл векторного произведения
  8. Геометрический смысл комплексного числа
  9. Геометрический смысл определенного интеграла
  10. Геометрический смысл производной
  11. Геометрический смысл смешанного произведения
  12. Лицензия на осуществление видов деятельности отличается от лицензии на право пользования участком недр, так как регулируются разными законами и имеют различный правовой смысл.

Опыт Штерна

Молекулярно-кинетическая теория

В основе молекулярно-кинетической теории лежат три положения:

1) Вещество состоит из микроскопических частиц (молекул), разделенных промежутками

2) Эти частицы (молекулы) находятся в непрерывном хаотическом движении

3) Частицы взаимодействуют друг с другом с силами, которые на больших расстояниях являются силами притяжения, а на маленьких, силами отталкивания

Впервые предположение о дискретном строении вещества на уровне догадок высказал Демокрит. Основы молекулярно-кинетической теории были заложении русским ученым Ломоносовым. Дальнейшее развитие МКТ получила в трудах Клаузиуса, Максвелла, Больцмана и Джоуля. МКТ подтверждают теплопроводность, броуновское движение, процесс диффузии.

Молекула – наименьшая устойчивапя обособленная частица вещества, обладающая его основными химическими свойствами. Размеры молекул колеблются от 10 –10 до 10 –7 м.

МКТ находит свое подтверждение в броуновском движении, диффузии. Определение скорости теплового движения впервые было осуществлено в опыте Штерна.

Установка немецкого физика О. Штерна состояла из двух коаксиальных цилиндров. По общей оси протянута платиновая проволока, покрытая слоем серебра. При пропускании тока по проволоке, атомы серебра испаряются. Испаряющиеся атомы разлетаются во все стороны. Во внутреннем цилиндре имеется щель, пролетая сквозь которую, атомы серебра оседают на внутренней поверхности внешнего цилиндра. При вращении установки. Атомы осаждаются не напротив щели, а смещаются на некоторое расстояние. Измеряя смещение можно вычислить скорость атомов серебра. При вращении серебряная полоска оказывается размытой, что говорит о том, что атомы имеют разную скорость.

С точки зрения молекулярно кинетической теории, давление газа – это есть результат ударов молекул газа о стенку.

Выделим площадку и рассмотрим процесс столкновений молекул с этой стенкой. Будем считать, что молекулы движутся с разными скоростями, в разных направлениях, но молекулы газа одинаковы.

Разделим процесс столкновения на два этапа:

1. Молекулы подлетают к стенке и, в процессе взаимодействия с молекулами стенки их скорость становится равной нулю.

2. Импульс молекулы увеличивается под действием силы отталкивания от нуля до конечного значения скорости, с которой молекулы отлетают от стенки.

Разделим все газа на группы, так что молекулы каждой имеют почти одну и ту же по величине и направлению скорость и рассмотрим молекулы какой-то i-той группы.

В процессе 1 за время dt к стенке подлетают молекул данной группы, при этом их импульс меняется на величину , где – число молекул данной группы в единицу объема газа.

В процессе 2 молекулы отлетают от стенки хаотично. Рассмотрим j группу молекул, двигающихся от стенки. За время dt их импульс изменился за счет действия сил отталкивания от стенки на величину

Средняя сила, действующая на молекулы газа, направлена перпендикулярно стенке вдоль оси Ox, поэтому , где в последней сумме учитываются молекулы, движущиеся как к стенке, так и от нее. Давление . В силу того, что все направления движения молекул равновероятны, , где , . Тогда . Эта формула справедлива как в релятивистском случае, так в нерелятивистском. В нерелятивистском случае можно формулу расписать как , где – средняя кинетическая энергия поступательного движения одной молекулы.

Замечание 1: При выводе этой формулы не учитывались столкновения между молекулами. Поскольку при столкновении происходит процесс перехода одной группы в другую, то при вычислении давления это будет не существенно, а существенен учет поступательного движения молекул.

Замечание 2: Если молекулы не тождественны и взаимодействуют друг с другом, то можно найти давление каждой группы молекул, а общее давление будет равно сумме давлений каждой группы …. Отсюда следут закон Дальтона.

Читайте также:  Линзы для зрения на 3 месяца

Пример: Давление фотонного газа.

Если скорость частиц газа сравнима со скоростью света, то такой газ называется релятивистким в земных условиях.

Возьмем какую-то полость и будем поддерживать стенки этой полостипри какой-то постоянной температуре. Стенки будут испускать инфракрасное излучение, состоящее из фотонов. Такой газ, состоящий из хаотически движущихся во всех направлениях фотонов, называется фотонным газом. Давление фотонного газа можно посчитать, учитывая, что импульс фотона равен , тогда , где – объемная плотность потока энергии.

| следующая лекция ==>
Термодинамические неравенства | Теорема о равномерном распределении кинетической энергии по степеням свободы

Дата добавления: 2014-01-04 ; Просмотров: 1836 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Что такое давление с точки зрения мкт

Простейшей моделью, рассматриваемой молекулярно-кинетической теорией, является модель идеального газа . В кинетической модели идеального газа молекулы рассматриваются как идеально упругие шарики, взаимодействующие между собой и со стенками только во время упругих столкновений. Суммарный объем всех молекул предполагается малым по сравнению с объемом сосуда, в котором находится газ. Модель идеального газа достаточно хорошо описывает поведение реальных газов в широком диапазоне давлений и температур. Задача молекулярно-кинетической теории состоит в том, чтобы установить связь между микроскопическими (масса, скорость, кинетическая энергия молекул) и макроскопическими параметрами (давление, объем, температура).

В результате каждого столкновения между молекулами и молекул со стенками скорости молекул могут изменяться по модулю и по направлению; на интервалах времени между последовательными столкновениями молекулы движутся равномерно и прямолинейно. В модели идеального газа предполагается, что все столкновения происходят по законам упругого удара, т. е. подчиняются законам механики Ньютона.

Используя модель идеального газа, вычислим давление газа на стенку сосуда . В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция скорости, параллельная стенке, остается неизменной (рис. 3.2.1).

Рисунок 3.2.1.

Поэтому изменение импульса молекулы будет равно , где – масса молекулы.

Выделим на стенке некоторую площадку (рис. 3.2.2). За время с этой площадкой столкнутся все молекулы, имеющие проекцию скорости , направленную в сторону стенки, и находящиеся в цилиндре с основанием площади и высотой .

Рисунок 3.2.2.

Пусть в единице объема сосуда содержатся молекул; тогда число молекул в объеме цилиндра равно . Но из этого числа лишь половина движется в сторону стенки, а другая половина движется в противоположном направлении и со стенкой не сталкивается. Следовательно, число ударов молекул о площадку за время равно Поскольку каждая молекула при столкновении со стенкой изменяет свой импульс на величину , то полное изменение импульса всех молекул, столкнувшихся за время с площадкой , равно По законам механики это изменение импульса всех столкнувшихся со стенкой молекул происходит под действием импульса силы , где – некоторая средняя сила, действующая на молекулы со стороны стенки на площадке . Но по 3-му закону Ньютона такая же по модулю сила действует со стороны молекул на площадку . Поэтому можно записать:

Разделив обе части на , получим:

где – давление газа на стенку сосуда.

При выводе этого соотношения предполагалось, что все молекул, содержащихся в единице объема газа, имеют одинаковые проекции скоростей на ось . На самом деле это не так.

В результате многочисленных соударений молекул газа между собой и со стенками в сосуде, содержащем большое число молекул, устанавливается некоторое статистическое распределение молекул по скоростям. При этом все направления векторов скоростей молекул оказываются равноправными (равновероятными), а модули скоростей и их проекции на координатные оси подчиняются определенным закономерностям. Распределение молекул газа по модулю скоростей называется распределением Максвелла . Дж. Максвелл в 1860 г. вывел закон распределения молекул газа по скоростям, исходя из основных положений молекулярно-кинетической теории. На рис. 3.2.3 представлены типичные кривые распределения молекул по скоростям. По оси абсцисс отложен модуль скорости, а по оси ординат – относительное число молекул, скорости которых лежат в интервале от до . Это число равно площади выделенного на рис. 3.2.3 столбика.

Рисунок 3.2.3.

Характерными параметрами распределения Максвелла являются наиболее вероятная скорость , соответствующая максимуму кривой распределения, и среднеквадратичная скорость где – среднее значение квадрата скорости.

С ростом температуры максимум кривой распределения смещается в сторону больших скоростей, при этом и увеличиваются.

Чтобы уточнить формулу для давления газа на стенку сосуда, предположим, что все молекулы, содержащиеся в единице объема, разбиты на группы, содержащие , , и т. д. молекул с проекциями скоростей , , и т. д. соответственно. При этом Каждая группа молекул вносит свой вклад в давление газа. В результате соударений со стенкой молекул с различными значениями проекций скоростей возникает суммарное давление

Входящая в это выражение сумма – это сумма квадратов проекций всех молекул в единичном объеме газа. Если эту сумму разделить на , то мы получим среднее значение квадрата проекции скорости молекул:

Теперь формулу для давления газа можно записать в виде

Так как все направления для векторов скоростей молекул равновероятны, среднее значение квадратов их проекций на координатные оси равны между собой:

Последнее равенство вытекает из формулы:

Формула для среднего давления газа на стенку сосуда запишется в виде

Это уравнение устанавливает связь между давлением идеального газа, массой молекулы , концентрацией молекул , средним значением квадрата скорости и средней кинетической энергией поступательного движения молекул. Его называют основным уравнением молекулярно-кинетической теории газов.

Таким образом, давление газа равно двум третям средней кинетической энергии поступательного движения молекул, содержащихся в единице объема .

В основное уравнение молекулярно-кинетической теории газов входит произведение концентрации молекул на среднюю кинетическую энергию поступательного движения. Если предположить, что газ находится в сосуде неизменного объема , то ( – число молекул в сосуде). В этом случае изменение давления пропорционально изменению средней кинетической энергии.

Возникают вопросы: каким образом можно на опыте изменять среднюю кинетическую энергию движения молекул в сосуде неизменного объема? Какую физическую величину нужно изменить, чтобы изменилась средняя кинетическая энергия Опыт показывает, что такой величиной является температура .

Понятие температуры тесно связано с понятием теплового равновесия . Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, называется количеством теплоты .

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура – это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии. Возможность введения понятия температуры следует из опыта и носит название нулевого закона термодинамики .

Для измерения температуры используются физические приборы – термометры , в которых о величине температуры судят по изменению какого-либо физического параметра. Для создания термометра необходимо выбрать термометрическое вещество (например, ртуть, спирт) и термометрическую величину , характеризующую свойство вещества (например, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании).

Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются заданными. Чаще всего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой – это смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении. По температурной шкале Цельсия точке плавления льда приписывается температура , а точке кипения воды – . Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками и принимается равным . В ряде стран (США) широко используется шкала Фаренгейта (F), в которой температура замерзающей воды принимается равной 32 °F, а температура кипения воды равной 212 °F. Следовательно,

Особое место в физике занимают газовые термометры (рис. 3.2.4), в которых термометрическим веществом является разреженный газ (гелий, воздух) в сосуде неизменного объема (), а термометрической величиной – давление газа . Опыт показывает, что давление газа (при ) растет с ростом температуры, измеренной по шкале Цельсия.

Рисунок 3.2.4.

Чтобы проградуировать газовый термометр постоянного объема, можно измерить давление при двух значениях температуры (например, 0 °C и 100 °C), нанести точки и на график, а затем провести между ними прямую линию (рис. 3.2.5). Используя полученный таким образом калибровочный график, можно определять температуры, соответствующие другим значениям давления. Экстраполируя график в область низких давлений, можно определить некоторую «гипотетическую» температуру, при которой давление газа стало бы равным нулю. Опыт показывает, что эта температура равна и не зависит от свойств газа . На опыте получить путем охлаждения газ в состоянии с нулевым давлением невозможно, так как при очень низких температурах все газы переходят в жидкое или твердое состояние.

Рисунок 3.2.5.

Английский физик У. Кельвин (Томсон) в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы ( шкала Кельвина ). В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута:

.

В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой K. Например, комнатная температура по шкале Кельвина равна .

Температурная шкала Кельвина называется абсолютной шкалой температур . Она оказывается наиболее удобной при построении физических теорий.

Нет необходимости привязывать шкалу Кельвина к двум фиксированным точкам – точке плавления льда и точке кипения воды при нормальном атмосферном давлении, как это принято в шкале Цельсия.

Кроме точки нулевого давления газа, которая называется абсолютным нулем температуры , достаточно принять еще одну фиксированную опорную точку. В шкале Кельвина в качестве такой точки используется температура тройной точки воды ), в которой в тепловом равновесии находятся все три фазы – лед, вода и пар. По шкале Кельвина температура тройной точки принимается равной .

Газовые термометры громоздки и неудобны для практического применения: они используются в качестве прецизионного стандарта для калибровки других термометров.

Таким образом, давление разреженного газа в сосуде постоянного объема изменяется прямо пропорционально его абсолютной температуре: . С другой стороны, опыт показывает, что при неизменных объеме и температуре давление газа изменяется прямо пропорционально отношению количества вещества в данном сосуде к объему сосуда

где – число молекул в сосуде, – постоянная Авогадро, – концентрация молекул (т. е. число молекул в единице объема сосуда). Объединяя эти соотношения пропорциональности, можно записать:

,

где – некоторая универсальная для всех газов постоянная величина. Ее называют постоянной Больцмана , в честь австрийского физика Л. Больцмана, одного из создателей молекулярно-кинетической теории. Постоянная Больцмана – одна из фундаментальных физических констант. Ее численное значение в СИ равно:

.

Сравнивая соотношения с основным уравнением молекулярно-кинетической теории газов, можно получить:

Средняя кинетическая энергия хаотического движения молекул газа прямо пропорциональна абсолютной температуре.

Таким образом, температура есть мера средней кинетической энергии поступательного движения молекул .

Следует обратить внимание на то, что средняя кинетическая энергия поступательного движения молекулы не зависит от ее массы. Броуновская частица, взвешенная в жидкости или газе, обладает такой же средней кинетической энергией, как и отдельная молекула, масса которой на много порядков меньше массы броуновской частицы. Этот вывод распространяется и на случай, когда в сосуде находится смесь химически невзаимодействующих газов, молекулы которых имеют разные массы. В состоянии равновесия молекулы разных газов будут иметь одинаковые средние кинетические энергии теплового движения, определяемые только температурой смеси. Давление смеси газов на стенки сосуда будет складываться из парциальных давлений каждого газа:

.

В этом соотношении , , , … – концентрации молекул различных газов в смеси. Это соотношение выражает на языке молекулярно-кинетической теории экспериментально установленный в начале XIX столетия закон Дальтона : давление в смеси химически невзаимодействующих газов равно сумме их парциальных давлений .

42. Давление и температура с точки зрения молекулярно кинетической теории.

Любое макроскопическое тело или группа макроскопических тел называется термодинамической системой.

Тепловое или термодинамическое равновесие — такое состояние термодинамической системы, при котором все ее макроскопические параметры остаются неизменными: не меняются объем, давление, не происходит теплообмен, отсутствуют переходы из одного агрегатного состояния в другое и т.д. При неизменных внешних условиях любая термодинамическая система самопроизвольно переходит в состояние теплового равновесия.

Температура — физическая величина, характеризующая состояние теплового равновесия системы тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

Абсолютный нуль температуры — предельная температура, при которой давление идеального газа при постоянном объеме должно быть равно нулю или должен быть равен нулю объем идеального газа при постоянном давлении.

Давление — это явление когда частицы (молекулы) «давят» на сосуд (под действием внутренней энергии и теплового беспорядочного движения ударяются в стенки сосуда). Чем больше кинетическая энергия частицы тем больше сила удара об стенку приходящаяся на единицу площади, тем больше давление.

43.Среднеквадратичная скорость молекул газа.

Среднеквадратичная скорость молекул равна квадратному корню из среднего квадрата скорости молекул:(5)

Вычислим среднеквадратичную скорость из средней кинетической энергии молекул, которую мы легко можем сосчитать:

Оказывается у молекул есть средняя скорость (по модулю), которая зависит от температуры, и основная часть молекул имеет модуль скорости близкий к ней. Эту скорость мы не можем вычислить, но можем легко посчитать среднеквадратичную скорость движения молекул газа, которая отличается от средней скорости коэффициентом порядка 1.

44.Уравнение изобарного процесса. Его график в координатах pv, pt, vt.

Изобарный процесс — термодинамический процесс, происходящий в системе при постоянном давлении и постоянной массе идеального газа.Согласно закону Гей-Люссака, при изобарном процессе в идеальном газе .

Работа, совершаемая газом при расширении или сжатии газа, равна .

Количество теплоты, получаемое или отдаваемое газом, характеризуется изменением энтальпии: .

Идеальный газ в молекулярно-кинетической теории

Идеальный газ. Идеальный газ с точки зрения молекулярно-кинетической теории простейшая физическая модель реального газа.

Под моделью в физике понимают не увеличенную или уменьшенную копию реального объекта. Физическая модель – это создаваемая учеными общая картина реальной системы или явления, которая отражает наиболее существенные, наиболее характерные свойства системы.

В физической модели газа принимаются во внимание лишь те основные свойства молекул, учет которых необходим для объяснения главных закономерностей поведения реального газа в определенных интервалах давления и температуры.

В молекулярно-кинетической теории идеальным газом называют газ, состоящий из молекул, взаимодействие между которыми пренебрежимо мало. Иными словами, предполагается, что средняя кинетическая энергия молекул идеального газа во много раз больше потенциальной энергии их взаимодействия.

Реальные газы ведут себя подобно идеальному газу при достаточно больших разрежениях, т. е. когда среднее расстояние между молекулами во много раз больше их размеров. В этом случае силами притяжения между молекулами можно полностью пренебречь. Силы же отталкивания проявляются лишь на ничтожно малых интервалах времени при столкновениях молекул друг с другом.

В простейшей модели газа молекулы рассматривают как очень маленькие твердые шарики, обладающие массой. Движение отдельных молекул подчиняется законам механики Ньютона. Конечно, нет никакой гарантии, что с помощью такой модели можно объяснить все процессы в разреженных газах. Ведь известно, что молекулы отличаются не только массами. Они имеют сложное строение.

Но сейчас мы поставим и будем решать достаточно узкую задачу: вычислим давление газа с помощью молекулярно-кинетической теории . Для этой задачи простейшая модель газа оказывается удовлетворительной. Она приводит к результатам, которые подтверждаются опытом.

Давление газа в молекулярно-кинетической теории. Пусть газ находится в закрытом сосуде. Манометр показывает давление газа p0. (Напомним: давление определяется отношением модуля F силы, действующей перпендикулярно поверхности, к площади поверхности S: . Давление выражается в паскалях или миллиметрах ртутного столба: 1 Па = 1 Н/м² = 7,5 · 10 – ³ мм рт. ст.) Но как возникает это давление? Каждая молекула газа, ударяясь о стенку, в течение малого промежутка времени действует на нее с определенной силой. В результате беспорядочных ударов о стенку сила, действующая со стороны всех молекул на единицу площади стенки, т. е. давление, будет быстро меняться со временем примерно так, как показано на рисунке 18. Однако действия, вызванные ударами отдельных молекул, настолько слабы, что манометром они не регистрируются. Манометр фиксирует среднюю по времени силу, действующую на каждую единицу площади его чувствительного элемента – мембраны. Несмотря на небольшие изменения давления, среднее значение давления p0 практически оказывается вполне определенной величиной, так как ударов о стенку очень много, а массы молекул очень малы.

Давление газа будет тем больше, чем больше молекул ударяется о стенку за некоторый интервал времени и чем больше скорости соударяющихся со стенкой молекул.
Возникновение давления газа можно пояснить с помощью простой механической модели. Возьмем диск (он играет роль мембраны манометра) и закрепим его на стержне так, чтобы он располагался вертикально и мог поворачиваться вместе со стержнем вокруг вертикальной оси (рис. 19). С помощью наклонного желоба на диск направим струйку мелкой дроби (дробинки играют роль молекул). В результате многочисленных ударов дробинок на диск будет действовать некоторая средняя сила, вызывающая поворот стержня и изгиб упругой пластины П. Эффект же от ударов отдельных дробинок не заметен.
Тепловое движение молекул. С самого начала нужно отказаться от попыток проследить за движением всех молекул, из которых состоит газ. Их слишком много, и из-за столкновений друг с другом они движутся очень сложно. Нам и не нужно знать, как движется каждая молекула. Мы должны выяснить, к какому результату приводит совокупное движение всех молекул.

Характер же движения всей совокупности молекул газа известен из опыта (см. § З). Молекулы участвуют в хаотическом (тепловом) движении. Это означает, что скорость любой молекулы может оказаться как очень большой, так и очень малой, а направление движении молекул беспрестанно меняется при их столкновениям друг с другом.

Скорости отдельных молекул могут быть любыми, однако среднее значение модуля их скорости вполне определенное. Точно так же рост учеников в классе не одинаков. Но среднее значение роста – определенная величина. Чтобы ее найти, надо сложить вместе рост учеников и разделить эту сумму на количество учеников.

Среднее значение квадрата модуля скорости. В дальнейшем нам понадобится среднее значение не самой скорости, а квадрата скорости, от которого зависит средняя кинетическая энергия молекул.

Обозначим модули скоростей отдельных молекул через v1, v2, v3, …, vN. Среднее значение квадрата скорости определится следующей формулой:

Действительно, для каждой молекулы справедливо выражение (1.9). Сложив эти выражения для отдельных молекул и разделив обе части полученного уравнения на число молекул N, мы придем к формуле (1.10).

Так как направления Ox, Oy и Oz вследствие хаотичности движения молекул равноправны, средние значения квадратов проекций скорости равны друг другу:

т.е. средний квадрат проекции скорости равен 1/3 среднего квадрата самой скорости. Множитель 1/3 появляется вследствие трехмерности пространства и, соответственно, существования трех проекций у любого вектора.

Источники:
  • http://repetitor.biniko.com/blog-id114.htm
  • http://mydocx.ru/1-14696.html
  • http://studopedia.su/2_33038_molekulyarno-kineticheskiy-smisl-davleniya.html
  • http://physics.ru/courses/op25part1/content/chapter3/section/paragraph2/theory.html
  • http://studfiles.net/preview/436427/page:3/
  • http://phscs.ru/physics9/ideal-gas