Меню Рубрики

Что собой представляет свет с точки зрения волновой теории света

На протяжении всей жизни нас окружают удивительные вещи, предметы, места. Мы видим их, но вовсе не потому, что они существуют, а благодаря свету.

Если бы не свет, то у живых существ не было бы зрения как инструмента, и нам пришлось бы довольствоваться другими органами чувств. Как кроты, проживающие под землей, довольствуются слухом. Что же представляет собой свет? Что это за понятие с точки зрения физики и какое значение он имеет для жизни на Земле?

Тайну света люди пытались раскрыть в течение многих столетий, однако приблизиться к разгадке удалось только в XVIII веке. Сначала датский физик Ганс Эрстеда выяснил, что электроток способен оказывать влияние на стрелку в магнитном компасе, а затем британский математик Джеймс Максвелл сумел доказать, что магнитные и электрические поля существуют в виде волн, распространяющихся со скоростью света.

Из этого ученые дали определение света как формы электромагнитного излучения, которое воспринимается глазом человека.

Какова природа света?

Установить природу света помогают оптические явления, изучением которых занимается оптика. Эта наука стала одним из первых разделов физики, установившим двойственную природу света. Согласно корпускулярной теории, свет – это поток частиц, называемых фотонами и квантами.

По волновой теории, свет являет собой совокупность электромагнитных волн, при этом возникающие в природе оптические эффекты становятся результатом сложения данных волн. Что интересно, и теория о потоках частиц, и теория о волнах имеют право на жизнь.

Какие характеристики имеет свет?

Как и любое природное явление, свет обладает множеством уникальных характеристик, среди которых одной из важнейших является цвет. Электромагнитное излучение, воспринимаемое нашим глазом, различается по диапазону длин и частоте волны, что, в свою очередь, влияет на световой спектральный состав. К примеру, фиолетовый цвет видится при длине волн 380–440 нм и частоте 790–680 ТГц, а желтый – при показателях 565–590 нм и 530–510 ТГц.

Помимо цвета, свет обладает способностью перемещаться в пространстве, преломляться и отражаться. Преломление света представляет собой изменение направления электромагнитных волн. В нашей обыденной жизни такое явление встречается повсеместно. Например, если посмотреть на стакан чая, в котором находится ложка, можно заметить, что на границе воздуха и жидкости она будто «преломлена».

Аналогично привычным явлением для нас является отражение света, позволяющее увидеть себя в водной глади, зеркале или на блестящих предметах. К другим характеристикам можно отнести способность света к поляризации и изменению интенсивности.

Какова скорость света?

Скорость света рассчитывается в двух субстанциях – в вакууме и прозрачной среде. В первом случае ее показатели неизменны. В космическом пространстве скорость света является фундаментальной постоянной единицей и составляет 299 792 458 метров в секунду.

Считается, что помимо света, с аналогичной скоростью в природе распространяются электромагнитные излучения (например, рентгеновские лучи или радиоволны) и, возможно, гравитационные волны. Скорость света, находящегося в прозрачной среде, может меняться в зависимости от фазы колебательных движений.

В связи с этим различают фазовую скорость, которая обычно (но необязательно) меньше скорости в вакууме, и групповую – всегда меньше скорости в вакууме.

Как свет воспринимается глазом?

Как говорилось выше, способность человека видеть окружающие предметы существует только благодаря свету. При этом мы не смогли бы воспринимать электромагнитные излучения, если бы в наших глазах не было специальных рецепторов, которые реагируют на данное излучение. Глазная сетчатка человека состоит из двух типов клеток – палочек и колбочек. Первые высоко чувствительны к освещению, поэтому могут работать только при низкой освещенности, то есть отвечают за ночное зрение. При этом они демонстрируют мир исключительно в черно-белых цветах.

Колбочки обладают пониженной чувствительностью к свету и обеспечивают дневное зрение, позволяющее видеть цветное изображение. Спектральный состав света хорошо воспринимается благодаря тому, что в наших глазах существуют 3 вида колбочек, которые различаются между собой распределением чувствительности.

Теория Х. Гюйгенса. Волновая теория света

Фундаментальные работы Ньютона, вошедшие потом в «Оптику» оказали большое влияние на современников. Мышление Гюйгенса находится под воздействием этих работ.

Действительно, он после работ Ньютона, восхищаясь их экспериментальной стороной, но не разделяя его теоретической интерпретации, пришел к выводу, что «явление окрашивания остается еще весьма таинственным из-за трудности объяснения этого разнообразия цветов с помощью какого-либо физического механизма». Поэтому он счел наиболее целесообразным вообще не рассматривать вопроса о цветах в своем трактате.

С точки зрения волновой теории света, основоположником которой и является Х.Гюйгенс, световое излучение представляет собой волновое движение. Световые волны Гюйгенс рассматривал как упругие волны высокой частоты, распространяющиеся в особой упругой и плотной среде — эфире, заполняющем все материальные тела, промежутки между ними и межпланетные пространства.

  • 1) Свет — это распространение упругих периодичных импульсов в эфире. Эти импульсы продольны и похожи на импульсы звука в воздухе.
  • 2) Эфир — гипотетическая среда, заполняющая небесное пространство и промежутки между частицами тел. Она невесома, не подчиняется закону всемирного тяготения, обладает большой упругостью.
  • 3) Принцип распространения колебаний эфира таков, что каждая его точка, до которой доходит возбуждение, является центром вторичных волн. Эти волны слабы, и эффект наблюдается только там, где проходит их огибающая поверхность — фронт волны (принцип Гюйгенса).

Чем дальше волновой фронт от источника, тем более плоским он становится.

Световые волны, приходящие непосредственно от источника, вызывают ощущение видения. Принцип Гюйгенса легко доказывает, что световые лучи в однородной среде распространяются прямолинейно.

«Скорость света должна зависеть обратно пропорционально от абсолютного показателя среды» доказывал Гюйгенс. Этот вывод был противоположен выводу, вытекающему из теории Ньютона. Невысокий уровень экспериментальной техники XVII века исключал возможность установить, какая из теорий верна. Многие сомневались в волновой теории Гюйгенса, но среди малочисленных сторонников волновых взглядов на природу света были М. Ломоносов и Л. Эйлер. С исследований этих ученых теория Гюйгенса начала оформляться как теория волн, а не просто апериодических колебаний, распространяющихся в эфире.

Что такое свет? Развитие двух теорий света

История развития представлений о природе света, развитие оптики. Теория И. Ньютона: корпускулярная теория цвета. Теория Х. Гюйгенса: волновая теория света. Опыты Т. Юнга и последующие открытия. Электромагнитная теория света. Природа света XX века.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 15.12.2015
Размер файла 27,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

по дисциплине «Основы физики»

на тему: «Что такое свет? Развитие двух теорий света»

Исполнитель: студентка группы

1. История развития представлений о природе света

1.1 Древние времена

1.2 Развитие оптики

1.3 Развитие истории природы света

2. Теории XVII века

2.1 Теория И. Ньютона. Корпускулярная теория цвета

2.2Теория Х. Гюйгенса. Волновая теория света

3. XVIII — XIX век

3.1 Дальнейшее развитие волновой оптики

3.2 Опыты Томаса Юнга и последующие открытия

3.3 Электромагнитная теория света

4. Природа света XX века

Список использованной литературы

Задача: проследить историческое развитие природы света; рассмотреть две теории света.

Размышлять о природе света начали еще в древние времена. Первые гипотезы были наивны и туманны.

Свет — чрезвычайно важный вид энергии. Жизнь на земле зависит от солнечного света. Кроме того, свет — это излучение, которое дает нам зрительные ощущения. Мы видим предметы, когда свет от них достигает наших глаз. Эти предметы либо сами излучают свет, либо отражают свет излучаемый другими предметами, либо пропускают его через себя.

Интерференция — физическое явление перераспределения волновой энергии в пространстве при наложении монохроматичных (одинаковой частоты колебаний) волн.

Поляризация — физический процесс создания определенного направления колебаний вектора напряженности в электромагнитной волне.

Дисперсия — зависимость показателя преломления вещества от длинны волны падающего излучения.

Дифракция (результат интерференции) — физическое явление нарушения прямолинейного распространения волн в неоднородных средах.

Фотоэффект — явление вырывания электронов с поверхности тел под действием света.

Эффект Комптона — явление изменения длины волны излучения при его рассеивании

природа свет корпускулярный юнг

1. История развития представлений о природе света

1.1 Древние времена

Жизнь на Земле возникла и существует благодаря солнечному свету. Благодаря ему мы воспринимаем и познаем окружающий мир. Лучи света сообщают нам о положении близких и отдаленных предметов, об их форме и цвете.

Основы теории света были заложены еще в глубокой древности.

Евклид и Аристотель (300-250 гг до н.э.) опытным путем установили такие основные законы оптических явлений, как прямолинейное распространение света и независимость световых пучков, отражение и преломление. Так же Аристотелю приписывают утверждение, что свет есть нечто, исходящее из глаз. Лучи света как бы ощупывают предметы, доставляя наблюдателю информацию об их форме и качестве. Естественно, возникал вопрос, почему же в таком случае человек не видит в темноте?

В школе Пифагора утверждали, что лучи Солнца «проникают через густой и холодный эфир». Впервые появляется мысль о том, что свет каким-то образом передается материальной средой — эфиром.

Греческий философ Платон (427-327 г. до н.э.) создал одну из первых теорий света. Он понял, что именно солнце — истинная причина всех видимых вещей.

Несмотря на то, что теоретические положения древних философов, а позднее и ученых средних веков, были недостаточными и противоречивыми, они способствовали формированию правильных взглядов на сущность световых явлений и положили начало дальнейшему развития теории света и созданию разнообразных оптических приборов. По мере накопления новых исследований о свойствах световых явлений изменилась точка зрения на природу света. Ученые считают, что историю изучения природы света следует начинать с XVII века.

Читайте также:  Ухудшается ли зрение при ношении очков при астигматизме

1.2 Развитие оптики

Независимо от гипотез о происхождении света развивалась геометрическая оптика.

До второй половины XVII в. оптика представляла, по существу, один из разделов геометрии. Световой луч — прямая линия и светящаяся точка — начало этой линии. Далее были установлены законы отражения и преломления света. Первый был известен еще в Древней Греции. Закон преломления света открыли независимо друг от друга голландский ученый Виллеброд Снеллиус (1591—1626) и французский ученый Рене Декарт (1596—1650).

В эпоху Возрождения оптика входит в практику, становится жизненно важной областью физики в связи с созданием подзорной трубы (1609) и микроскопа (1637).

Усовершенствованием оптических приборов занимаются естествоиспытатели разнообразных научных направлений, Создание рациональных конструкций оптических приборов требовало устранения сферических и хроматических аберраций. Исследование последних и явилось началом развития физической оптики.

Сравнение расчетов оптических приборов с опытом ясно показало недостаточность принципов геометрической оптики для правильного описания и объяснения распространения света.

Первой проблемой физической оптики была проблема цветности световых лучей. До XVII в. естествоиспытатели, следуя традиции Аристотеля, считали, что цвета являются результатом смешения света с темнотой в разных пропорциях. Были также известны призматические цвета. Появление их относили или за счет каких-то особенностей источника света, или за счет особых свойств тела, имеющего данный цвет. Чешский естествоиспытатель Мариус Марци де Кронланд указал, что проблему можно решить, разгадав происхождение призматических цветов. Он впервые высказал правильную мысль, что «различные виды призматических цветов являются частями с различными преломлениями», однако дальше он не пошел.

Еще более трудная проблема физической оптики возникает во второй половине XVII в. В 1655 г. в Болонье был напечатан трактат иезуита Франческо Мария Гримальди, в котором было впервые описано явление дифракции света. В темную комнату сквозь узкое отверстие был пропущен солнечный свет. В световой конус Гримальди поместил, палку и наблюдал характер тени на белом экране. Образовалась картина, которая свидетельствовала о том, что лучи света могут отклоняться от прямолинейного распространения. Варьируя условия опыта, Гримальди нашел, что это новое физическое явление, и назвал его дифракцией.

Проблема цвета, связанная с ней проблема совершенствования оптических инструментов, необходимость объяснения явления дифракции — все это настоятельно требовало создания действенной системы оптических представлений, определенных гипотез о природе света. Назрела необходимость построения физической основы оптики.

1.3 Развитие истории природы света

В XVII веке датский астроном Ремер (1644-1710) измерил скорость распространения света.

Итальянский физик Гримальди (1618-1663) открыл явление дифракции.

Гениальный английский ученый И.Ньютон (1642-1727) развил корпускулярную теорию света, открыл явления дисперсии и интерференции.

Э.Бартолин (1625-1698) обнаружил двойное лучепреломление в исландском шпате, заложив тем самым основы кристаллооптики.

Гюйгенс (1629-1695) положил начало волновой теории света.

2. Теории XVII века

2.1 Теория И. Ньютона. Корпускулярная теория цвета

В XVII веке делаются первые попытки теоретического обоснования наблюдаемых световых явлений.

Фундамент учения о свете заложил Исаак Ньютон. В 1672 г. Ньютон прислал секретарю Лондонского Королевского общества Ольденбургу письмо, в котором высказал намерение сделать сообщение на еженедельном заседании Общества «Об одном философском открытии». Письмо кончалось так. «По моему суждению, это страннейшее, если не самое значительное открытие, которое когда-либо делалось в отношении действий природы».

Корпускулярная теория света, развитая Ньютоном, состоит в том, что световое излучение рассматривается как непрерывный поток мельчайших частиц — корпускул, которые испускаются источником света и с большой скоростью летят в однородной среде прямолинейно и равномерно.

1) Свет состоит из малых частичек вещества, испускаемых во всех направлениях по прямым линиям, или лучам, светящимся телом, например, горящей свечой. Если эти лучи, состоящие из корпускул, попадают в наш глаз, то мы видим их источник.

2) Световые корпускулы имеют разные размеры. Самые крупные частицы, попадая в глаз, дают ощущение красного цвета, самые мелкие — фиолетового.

3) Белый цвет — смесь всех цветов: красного, оранжевого, желтый, зеленый, голубой, синий, фиолетовый.

4) Отражение света от поверхности происходит вследствие отражения корпускул от стенки по закону абсолютного упругого удара.

5) Явление преломления света объясняется тем, что корпускулы притягиваются частицами среды. Чем среда плотнее, тем угол преломления меньше угла падения.

6) Явление дисперсии света, открытое Ньютоном в 1666 г., он объяснил следующим образом. Каждый цвет уже присутствует в белом свете. Все цвета передаются через межпланетное пространство и атмосферу совместно и дают эффект в виде белого света. Белый свет — смесь разнообразных корпускул — испытывает преломление, пройдя через призму. С точки зрения механической теории, преломления обязано силам со стороны частиц стекла, действующим на световые корпускулы. Эти силы различны для разных корпускул. Они наибольшие для фиолетового и наименьшие для красного цвета. Путь корпускул в призме для каждого цвета будет преломляться по- своему, поэтому белый сложный луч расщепится на цветные составляющие лучи.

7) Ньютон наметил пути объяснения двойного лучепреломления, высказав гипотезу о том, что лучи света обладают «различными сторонами» — особым свойством, обуславливающим их различную преломляемость при прохождении двоякопреломляющего тела.

Корпускулярная теория Ньютона удовлетворительно объяснила многие оптические явления, известные в то время. Ее автор пользовался в научном мире колоссальным авторитетом, и вскоре теория Ньютона приобрела многих сторонников во всех странах. Цвета тонких пластинок, ньютоновские кольца, дифракционные явления требовали признания волнового элемента в световых лучах. Одна корпускулярная гипотеза не давала возможности интерпретировать эти явления. В то же время и волновая гипотеза не справлялась с целым рядом фактов (прямолинейность распространения, поляризация), приходилось прибегать к корпускулярным представлениям.

Принимая ту и другую гипотезу, Ньютон одновременно подчеркивал недостаточность гипотез вообще, их подчиненное положение по отношению к опытным фактам.

2.2 Теория Х. Гюйгенса. Волновая теория света

Фундаментальные работы Ньютона, вошедшие потом в «Оптику» оказали большое влияние на современников. Мышление Гюйгенса находится под воздействием этих работ.

Действительно, он после работ Ньютона, восхищаясь их экспериментальной стороной, но не разделяя его теоретической интерпретации, пришел к выводу, что «явление окрашивания остается еще весьма таинственным из-за трудности объяснения этого разнообразия цветов с помощью какого-либо физического механизма». Поэтому он счел наиболее целесообразным вообще не рассматривать вопроса о цветах в своем трактате.

С точки зрения волновой теории света, основоположником которой и является Х.Гюйгенс, световое излучение представляет собой волновое движение. Световые волны Гюйгенс рассматривал как упругие волны высокой частоты, распространяющиеся в особой упругой и плотной среде — эфире, заполняющем все материальные тела, промежутки между ними и межпланетные пространства.

1) Свет — это распространение упругих периодичных импульсов в эфире. Эти импульсы продольны и похожи на импульсы звука в воздухе.

2) Эфир — гипотетическая среда, заполняющая небесное пространство и промежутки между частицами тел. Она невесома, не подчиняется закону всемирного тяготения, обладает большой упругостью.

3) Принцип распространения колебаний эфира таков, что каждая его точка, до которой доходит возбуждение, является центром вторичных волн. Эти волны слабы, и эффект наблюдается только там, где проходит их огибающая поверхность — фронт волны (принцип Гюйгенса).

Чем дальше волновой фронт от источника, тем более плоским он становится.

Световые волны, приходящие непосредственно от источника, вызывают ощущение видения. Принцип Гюйгенса легко доказывает, что световые лучи в однородной среде распространяются прямолинейно.

«Скорость света должна зависеть обратно пропорционально от абсолютного показателя среды» доказывал Гюйгенс. Этот вывод был противоположен выводу, вытекающему из теории Ньютона. Невысокий уровень экспериментальной техники XVII века исключал возможность установить, какая из теорий верна. Многие сомневались в волновой теории Гюйгенса, но среди малочисленных сторонников волновых взглядов на природу света были М. Ломоносов и Л. Эйлер. С исследований этих ученых теория Гюйгенса начала оформляться как теория волн, а не просто апериодических колебаний, распространяющихся в эфире.

3. XVIII — XIX век

3.1 Дальнейшее развитие волновой оптики

В области оптики после Ньютона не происходит больших событий вплоть до конца XVIII в. Исследователи заняты в основном освоением наследства, оставленного Ньютоном и совершенствованием инструментальной оптики. Следует отметить лишь, что в середине века трудами П. Бугера и И.Г. Ламберта создается фотометрия.

В оптических воззрениях XVIII в. господствует корпускулярная гипотеза. Однако имеется и сильная оппозиция ньютоновским тенденциям. М. В. Ломоносов и Л. Эйлер подвергают резкой критике корпускулярную гипотезу.

Развивая воззрения Гюйгенса и Гука, Эйлер последовательно проводит аналогию между светом и звуком: звук распространяется в воздухе, свет — в эфире продольными волнами. Однако в отличие от Гюйгенса, Эйлер вводит в волновую оптику ее важнейший элемент — представление о периодичности света.

Цветность светового луча, по Эйлеру, определяется длиной его волны. Цвета тел являются результатом вибрации частиц тела под действием падающего света. Опираясь на эти представления, Эйлер развивает качественную теорию оптических явлений.

Наряду с теоретическими конструкциями к концу XVIII в. появляются экспериментальные факты, тесно связанные с решением вопроса о природе света. В 1791 г. аббат Прево устанавливает общность свойств тепловых и световых лучей, Вильям Гершель (1738—1822) в 1800 г. открывает инфракрасные лучи по их тепловым действиям, а Иоганн Риттер — ультрафиолетовые лучи по их химическим действиям. Далее выясняется, что невидимые излучения по своим свойствам тождественны свету.

К этому времени уже известны тепловые и световые действия электричества. Обнажаются, таким образом, поразительные связи явлений. Они заставляют естествоиспытателей размышлять об общности тепла, света и электричества.

Читайте также:  Что означает красный цвет с психологической точки зрения

В конце XVIII в. А. Лавуазье высказал гипотезу, что в «природе существует особое вещество, производящее то явление, которое мы называем светом», и приписал это вещество к числу химических элементов.

Однако корпускулярная гипотеза не давала пищи для таких размышлений. В то же время гипотеза эфира давала простор для теоретических построений, способных учесть связи между физическими явлениями. Не случайно физики снова обращаются к идее связи света и электричества.

3.2 Опыты Томаса Юнга и последующие открытия

В 1801 г. Томас Юнг (1773—1829) формулирует гипотезу о том, что светящееся тело возбуждает колебательные движения в эфире; ощущение цветов зависит от частоты колебаний, возбужденных светом на сетчатке.

Юнг вводит понятия частоты колебаний и длины волны, устанавливает соотношение между ними и скоростью распространения волны.

Юнг ставит серию экспериментов для утверждения принципа интерференции. Трудно было изменить привычным корпускулярным представлениям. «Вот бесспорно самая странная из гипотез! — писал Араго.— Неожиданностью было видеть ночь среди ясного дня в точках, которых свободно достигали солнечные лучи, но кто бы мог подумать, что свет, слагаясь со светом, может вызвать мрак».

Юнг убедительно продемонстрировал эффективность принципа интерференции в объяснении оптических явлений.

Введение представления о поперечности световых волн. В 1818 г. французский физик Огюстен Френель (1788—1827) представил во Французскую академию «Мемуар о дифракции света», в котором высказал плодотворную идею соединить принцип интерференции Юнга с принципом Гюйгенса. Эта идея позволила построить первую количественную теорию дифракционных явлений. Однако начиная еще с 1808 г. развиваются события, которые заставляют усомниться в преимуществе волновой теории по сравнению с корпускулярной.

В конце 1808 г. Малюс открывает новый оптический факт — поляризацию света при отражении. Араго в 1811 г, устанавливает возможность вращения плоскости поляризации, а Био в 1813 г. описывает явление хроматической поляризации. Наконец, Френель в 1816 г. ставит ряд экспериментов, обнаруживающих, в частности, что интерференция поляризованных лучей происходит только при параллельном расположении плоскостей поляризации. Эти факты никак не укладывались в рамки волновой теории, в которой волны в эфире предполагались аналогичными звуковым, т. е. продольными. Особенно явно противоречил этому представлению последний факт, установленный Френелем. Действительно, для осуществления интерференции поляризованных лучей нужно, чтобы колебания эфира совершались в одном и тем же направлении, но это противоречит самому существу интерференции,

Поляризационные явления вели к гипотезе о поперечности световых волн. К концу XIX в. кристаллизовалось представление о свете, как поперечных электромагнитных волнах.

3.3 Электромагнитная теория света

Электромагнитная теория света была создана в середине XIX века Максвеллом (1831-1879). Согласно этой теории световые волны имеют электромагнитную природу, а световое излучение можно рассматривать как частный случай электромагнитных явлений. Исследования Герца и в дальнейшем П.Н.Лебедева также подтвердили, что все основные свойства электромагнитных волн совпадают со свойствами световых волн.

Лоренц (1896) установил взаимосвязь между излучением и структурой вещества и развил электронную теорию света, согласно которой входящие в состав атомов электроны могут совершать колебания с известным периодом и при определенных условиях поглощать или испускать свет.

Электромагнитная теория Максвелла в сочетании с электронной теорией Лоренса объясняла все известные тогда оптические явления и, казалась полностью раскрывала проблему природы света.

Световые излучения рассматривались как периодические колебания электрической и магнитной силы, распространяющейся в пространстве со скоростью 300000 километров в секунду. Лоренс полагал, что носитель этих колебаний — электромагнитный эфир, обладает свойствами абсолютной неподвижности. Однако созданная электромагнитная теория вскоре оказалась несостоятельной. Прежде всего эта теория не учитывала свойства реальной среды в которой распространяются электромагнитные колебания. Кроме того, с помощью этой теории нельзя было объяснить ряд оптических явлений, с которыми столкнулась физика на рубеже XIX и XX веков. К таким явления относятся процессы излучения и поглощения света, излучение абсолютно черного тела, фотоэлектрический эффект и другие.

4. Природа света XX века

Квантовая теория света возникла в начале XX века. Она была сформулирована в 1900 году, а обоснована в 1905 году. Основоположниками квантовой теории света являются Планк и Эйнштейн. Было доказано, что вещество излучает или поглощает энергию конечными порциями (квантами), пропорциональными излучаемой или поглощаемой частоте. Энергия одного кванта E=h v, где v — частота излучения, a h — универсальная константа, названная постоянной М. Планка. Квантовая теория как бы в новой форме возродила корпускулярную теорию света, по существу же она явилась развитием единства волновых и корпускулярных явлений.

Теория квантов М. Планка совершила подлинную революцию в физике. Она стала основой для атомной теории, поскольку в 1913 г. Н. Бор применил ее к строению атома, а также объяснила движение электронов в твердых телах и дала начало квантовой физике. За открытие кванта М. Планк стал лауреатом Нобелевской премии по физике в 1918 г.

Квантовая теория вновь обострила противоречия, связанные с природой света. В 1923 г. Л. де Бройль выдвинул и обосновал гипотезу об универсальности дуализма в микромире. Он распространил идею А. Эйнштейна, высказанную в 1905 г., о двойственности природы света и вещества, т.е. каждой частице материи, в частности, электрону, должна соответствовать волна. Воспользовавшись теорий относительности, де Бройль вывел формулу, связывающую длину волны движущейся частицы с ее импульсом: Х= h/P, где h — постоянная М. Планка. За открытие волновой природы электронов де Бройль был удостоен Нобелевской премии по физике, а его теория легла в основу волновой механики. Открытие дифракционных (волновых) свойств микрочастиц привели к разработке новых методов исследования структуры веществ, в частности электронно-оптических методов.

В результате исторического развития современная оптика располагает обоснованной теорией световых явлений, которая может объяснить различные свойства излучений и позволяет ответить на вопрос о том, в каких условиях те или иные свойства световых излучений могут проявляться.

С физической точки зрения свет представляет собой сочетание электромагнитных волн с разными значениями длины и частоты. Глаз человека воспринимает не любой свет, а только лишь тот, длина волн которого колеблется от 380 до 760 нм. Остальные разновидности остаются для нас невидимыми. К ним, например, относятся инфракрасное и ультрафиолетовое излучения.

Исаак Ньютон представлял свет как направленный поток самых мелких частиц. И лишь позже было доказано, что он по своей природе является волной. Однако Ньютон все же был отчасти прав. Дело в том, что свет обладает не только волновыми, но и корпускулярными свойствами. Это подтверждается всем известным явлением фотоэффекта. Выходит, что световой поток имеет двоякую природу.

Современная теория света подтверждает его двойственную природу: волновую и корпускулярную. Результаты исследований, полученные в том или ином случае, не исключают, а дополняют друг друга. То есть световые волны имеют характерные особенности и частиц и волн одновременно.

Проводятся опыты, подтверждающие обе теории. Пока нет ответа на вопрос, что же такое свет.

Теоретические сведения. С точки зрения электромагнитной теории свет представляет собой поперечную электромагнитную волну, в которой колебания векторов напряженности электрического и

С точки зрения электромагнитной теории свет представляет собой поперечную электромагнитную волну, в которой колебания векторов напряженности электрического и магнитного полей происходят перпендикулярно направлению распространения света (рис. 2.2).

Е и Н – вектора напряженности соответственно электрического и магнитного полей; С – вектор скорости распространения волны.

Вектор напряженности электрического поля волны Е часто называют световым вектором. Это обусловлено тем, что физиологическое, фотохимическое, фотоэлектрическое и другие действия света вызываются колебаниями электрического вектора.

Излучение светящегося тела слагается из волн, испускаемых отдельными атомами тела. Излучение отдельного атома продолжается 10 –8 с. От каждого атома распространяются колебания Е и Н, происходящие в определенной плоскости (рис. 2.2). Мы же наблюдаем всегда суммарное действие многих атомов, а именно: множество всех возможных ориентировок Е и Н и быструю смену этих возможных ориентировок. Таким образом, свет, испускаемый обычными источниками, не имеет преимущественного направления колебаний, в нем представлены все направления колебаний Е, перпендикулярные к лучу. На рис. 2.3 показаны некоторые из возможных направлений колебаний вектора Е (вектор Н не указан).

Свет со всеми возможными ориентировками вектора Е (а следовательно, и вектора Н) называется естественным (рис. 2.3а). В естественном свете колебания различных направлений представлены с равной вероятностью (рис. 2.3).

Поляризованный свет – свет, в котором направления колебания вектора E каким-либо образом упорядочены.

Частично поляризованный свет (рис. 2.3б) – свет с преимущественным направлением колебаний вектора E.

Свет, в котором Е (а следовательно, и Н) имеет одно единственное направление, называется плоскополяризованным (рис. 2.3в).

Плоскость, проходящая через направление колебаний светового вектора Е и направление распространения волны, называется плоскостью поляризации.

На рис. 2.4 показано направление колебания вектора Е в плоскополяризованном свете. Из сказанного следует, что естественные источники света излучают волны не поляризованные.

Естественный свет можно преобразовать в плоскополяризованный, используя так называемые поляризаторы, пропускающие колебания только определенного направления.

Любой поляризатор может служить и анализатором, который предназначен для определения, поляризован свет или нет. В качестве поляризаторов и анализаторов используются пластина турмалина, поляроидные пленки, стопа Столетова, призма Николя и др.

Поставим на пути естественного света два поляроида, оси пропускания которых развернуты друг относительно друга на угол φ.

Вектор EI световой волны после первого поляроида будет параллелен PP. Этот поляроид называют поляризатором, так как после него естественный свет стал поляризованным.

Рис. 2.5. Поляризация естественного света с помощью поляроида

После второго поляроида останется лишь вектор EII, параллельный P’P’ его плоскости пропускания: E׀׀ = E1cosj. Так как интенсивность света I

Читайте также:  Вредные привычки как влияют на зрение

E 2 , то после второго поляроида интенсивность будет

где E1 – интенсивность перед вторым поляроидом. Полученное соотношение между интенсивностями носит название закона Малюса. Если E1 выразить через I, то закон Малюса примет вид

. (2.2)

Закон Малюса строго выполняется лишь для идеальных поляроидов – поляризатора и анализатора.

Если эти поляроиды частично пропускают свет с вектором E, перпендикулярным осям пропускания, то после поляризатора свет будет частично поляризован. Идеальный поляризатор при PP параллельном P’P’ пропустит свет интенсивностью Imax, а при PP перпендикулярной P’P’ – свет интенсивностью Imin.

Степенью поляризации частично-поляризованного света называется величина . При идеальном поляризаторе Imin = 0 и P = 1, свет плоскополяризован.

Если естественный свет падает на границу раздела двух диэлектриков, то отраженный и преломленный лучи являются частично поляризованными. В отраженном луче преобладают колебания, перпендикулярные плоскости падения, а в преломленном – колебания, лежащие в плоскости падения.

Рис. 2.6.Поляризация отраженного и преломленного лучей на границе раздела двух сред

Если угол падения равен углу Брюстера, который определяется соотношением

то отраженный луч является плоскополяризованным. Преломленный луч в этом случае поляризуется максимально, но не полностью. При этом отраженный и преломленный лучи взаимно перпендикулярны:

, .

Пусть угол падения i таков, что отраженный луч перпендикулярен преломленному, т.е. r = π/2 – iB. Это условие называют условием Брюстера (рис. 2.6), а угол – углом Брюстера (iB).

Рис. 2.7.Схематичное изображение законов отражения и преломления
на границе раздела двух сред

Используя закон преломления , получим формулу, определяющую угол Брюстера: .

При выполнении условия Брюстера тогда из формулы Френеля для получим:

.

Таким образом, при выполнении условия Брюстера, отраженный свет будет полностью поляризован в плоскости, перпендикулярной плоскости падения. Это утверждение носит название закона Брюстера.

Закон Брюстера имеет простое объяснение. Отраженная световая волна появляется за счет излучения электронов среды, совершающих вынужденные колебания под действием вектора преломленной волны. Это излучение имеет направленный характер: его интенсивность равна нулю в направлении колебаний зарядов. Направим под углом Брюстера на границу раздела плоскополяризованную волну с вектором , лежащим в плоскости падения.

Рис. 2.8.Диаграмма направленности излучения

На рис. 2.8 изображена диаграмма направленности излучения, возбужденного вектором . Нулевой минимум этой диаграммы при выполнении условия Брюстера совпадает по направлению с отраженным лучом.

Если вектор падающей волны направить перпендикулярно плоскости падения (рис. 2.9), то направление колебаний электронов будет перпендикулярно плоскости падения. Тогда диаграмма направленности будет развернута своим максимумом в направлении отраженного луча (рисунок ниже). Напомним, что пространственная форма диаграммы похожа на бублик без дырки.

Рис. 2.9.Диаграмма направленности излучения

Задание I.Проверка закона Малюса

1. Установить приборы на оптической скамье согласно рис. 2.10.

Рис. 2.10.Установка приборов на оптической скамье:

1 – осветитель, 2 – поляризатор, 3 – анализатор, 4 – фоторезистор

2. Подключить фоторезистор к микроамперметру.

3. Включить осветитель на максимальную мощность.

4. Установить угол между осями поляризации (пропускания) поляризатора и анализатора j = 0 0 . Для этого, вращая анализатор, добиться максимального значения фототока. При этом величины углов на угловой шкале поляризатора и анализатора должны быть одинаковыми.

5. Вращая анализатор, менять угол через каждые 10 0 до 180 0 , записать соответствующие показания микроамперметра в табл. 2.1.

6. Построить график экспериментальной зависимости отношения от угла между осями пропускания j.

7. Построить график зависимости от .

8. Сделать выводы.

j I, мкА

Задание II.Проверка закона Брюстера

Поскольку отраженный от диэлектрической пластинки свет частично (или даже полностью) поляризован, проходящий свет также частично поляризуется и становится смешанным светом. Преимущественные колебания электрического вектора в прошедшем свете будут совершаться в плоскости падения. Максимальная, но не полная поляризация проходящего света достигается при падении под углом Брюстера. Для увеличения степени поляризации проходящего света используют стопу стеклянных пластинок, расположенных под углом Брюстера к падающему свету. В этом случае можно получить практически полностью поляризованный проходящий свет, так как каждое отражение ослабляет пропущенные колебания, перпендикулярные плоскости падения.

Упражнение 1. Проверка закона Брюстера с помощью черного зеркала.

1. Установить на оптической скамье приборы на уровне луча согласно рис. 2.11.

Рис. 2.11.Расположение приборов на оптической скамье:

1 – осветитель, 2 – поляризатор, 3 – анализатор, 4 – черное зеркало с фоторезистором

2. Подключить фоторезистор черного зеркала к микроамперметру.

3. Включить осветитель на максимальную мощность.

4. Установить углы на угловой шкале поляризатора и анализатора на 0 ° .

5. Установить угловую шкалу на черном зеркале на отметке 90 ° .

6. Вращая угловую шкалу на черном зеркале с изменением угла a через каждые 10 ° , зафиксировать значения тока I1 на микроамперметре.

7. Не меняя расположения приборов, установить 90 ° на угловой шкале поляризатора и анализатора.

8. Вращая угловую шкалу на черном зеркале, изменяя угол a через каждые 10 ° , зафиксировать значения тока I2 на микроамперметре.

9. Результаты измерений занести в табл. 2.2.

10. Построить график зависимости фототока I1 и I2 от угла падения i на одном графике.

11. Определить угол Брюстера и рассчитать показатель преломления стекла черного зеркала.

12. Сделать соответствующие выводы.

a i = 90 ° – a I1, мкА I2, мкА

Дополнительное задание к упражнению 1

1. Установить на оптической скамье приборы согласно рис. 2.12.

Рис. 2.12.Приборы на оптической скамье:

1 – осветитель, 2 – поляризатор, 3 – черное зеркало с фоторезистором

2. Подключить фоторезистор черного зеркала к микроамперметру.

3. Включить осветитель на максимальную мощность.

4. Установить на угловой шкале поляризатора угол 180 ° .

5. Установить угловую шкалу на черном зеркале под углом Брюстера.

6. Вращая угловую шкалу поляризатора, изменяя угол b через каждые 10 ° , фиксируя значения фототока на микроамперметре.

7. Результаты измерений занести в табл.2.3.

8. Построить график зависимости от угла b.

9. Построить график зависимости от .

10. Сделать соответствующие выводы.

b I, мкА

Упражнение 2. Исследование поляризации света с помощью стеклянных пластин.

1. Установить на оптической скамье приборы согласно рис. 2.13.

Рис. 2.13. Расположение приборов на оптической скамье:

1 – осветитель, 2 – поляризатор, 3 – стопа пластин, 4 – фоторезистор

2. Подключить фоторезистор к микроамперметру.

3. Включить осветитель на максимальную мощность.

4. Установить на угловой шкале поляризатора угол 0 ° .

5. Установить угловую шкалу на стопе стеклянных пластин под углом 90 ° .

6. Вращая угловую шкалу стопы стеклянных пластин с изменением угла a через каждые 10 ° , фиксировать значения фототока I1 на микроамперметре.

7. Результаты измерений занести в табл. 2.4.

8. Установить на угловой шкале поляризатора угол 90 ° .

9. Повторить пункт 6, фиксируя значения фототока I2 на микроамперметре.

10. Результаты измерений занести в табл. 2.4.

11. Построить зависимости фототоков I1, I2, DI от угла падения луча i на стопу стеклянных пластин на одном графике.

12. По графику определить угол Брюстера и рассчитать показатель преломления для стекла стопы пластин.

13. Сделать соответствующие выводы.

a i = 90 ° – a I1, мкА I2, мкА DI = (I2 – I1), мкА

1. Охарактеризуйте свет как электромагнитные волны. Что понимается под поперечностью световых волн.

2. Что такое интенсивность света?

3. В чем отличие естественного света, частично поляризованного света, плоскополяризованного света.

4. Какая плоскость называется плоскостью поляризации?

5. Что такое поляризатор? Что такое анализатор?

6. Сформулируйте закон Малюса.

7. Каковы способы поляризации естественного света?

8. Как формулируется Закон Брюстера?

9. Сделайте выводы по полученным результатам.

Список литературы

1. Савельев, И. В. Курс общей физики: учеб. пособие: в 3 т. Т. 3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц. / И. В. Савельев – Спб. и др.: Лань, 2008. – 317 с.

2. Курс физики: учеб. пособие для вузов по техн. специальностям и направлениям: в 2 т. / В.В. Арсентьев и др.; под ред. В.Н. Лозовского. –СПб. и др.: Лань. – т.1. – 2009. – 572 с.; т.2. – 2009. – 600 с.: ил.

3. Трофимова, Т. И. Курс физики: учеб. пособие для инж.-техн. специальностей вузов / Т. И. Трофимова. – М.: Academia, 2008. – 557 с.

4. Трофимова, Т. И. Краткий курс физики: учеб. пособие для вузов / Т. И. Трофимова. – М.: Высш. шк., 2009. – 531 с.

5. Детлаф, А.А. Курс физики: учеб. пособие для втузов / А. А. Детлаф, Б. М. Яворский. М.: Высш. шк., 2002. – 717 с.

6. Детлаф, А. А. Курс физики: учеб. пособие для вузов / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 2000. – 717 с.

7. Пронин, В. П. Практикум по физике для студентов сельскохозяйственных вузов / В. П. Пронин – СПб.: Лань, 2005. – 256 с.: ил.

8. Лабораторный практикум по физике: учеб. пособие для студентов втузов / А. С. Ахматов, В. М. Андреевский, А. И. Кулаков и др.; под ред. А. С. Ахматова. – М.: Высш. школа, 1980. – 360 с.

Оглавление

ОБЩИН ПОЛОЖЕНИЯ О РАБОТЕ В ОПТИЧЕСКОЙ

1. ИЗУЧЕНИЕ ЯВЛЕНИЯ ДИФРАКЦИИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ДИФРАКЦИОННОЙ РЕШЕТКЕ……………………………………. 6

2. ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ ПОЛЯРИЗОВАННОГО

Методические указания к выполнению лабораторных работ

для студентов всех специальностей

Составители ГОГЕЛАШВИЛИ Гоча Шотаевич

СТАВЕР Елена Юрьевна

ЦЕЛИЩЕВА Лариса Владимировна

Редактор П. Г. Павловская

Компьютерная набор и верстка Л. В. Целищева,

Подписано в печать Формат 60×84/16

Бумага офсетная. Печать офсетная.

Тираж __700__экз. Заказ № . С- .

Марийский государственный технический университет

424000 Йошкар-Ола, пл. Ленина, 3

Марийского государственного технического университета

424006 Йошкар-Ола, ул. Панфилова, 17

Дата добавления: 2015-10-18 ; просмотров: 1306 . Нарушение авторских прав

Источники:
  • http://studwood.ru/1637205/matematika_himiya_fizika/teoriya_gyuygensa_volnovaya_teoriya_sveta
  • http://revolution.allbest.ru/physics/00626151_0.html
  • http://studopedia.info/10-708.html