Меню Рубрики

Черный пигмент поглощающий свет в органе зрения человека

2431. Для получения новых высокопродуктивных штаммов микроорганизмов используют
А) экспериментальный мутагенез
Б) отдаленную гибридизацию
В) массовый отбор
Г) стихийный (бессознательный) отбор

2432. Черный пигмент, поглощающий свет, располагается в органе зрения человека в
А) слепом пятне
Б) сосудистой оболочке
В) белочной оболочке
Г) стекловидном теле

2433. Пример палеонтологических доказательств эволюции позвоночных –
А) сходство их зародышей в эмбриональном развитии
Б) филогенетические ряды ископаемых форм
В) наличие рудиментов в системах органов
Г) проявление атавизмов в онтогенезе

2434. Почему большое число видов в экосистеме способствует повышению ее устойчивости?
А) особи разных видов не связаны друг с другом
Б) большое число видов ослабляет конкуренцию
В) особи разных видов используют разную пищу
Г) в пищевых цепях один вид может быть заменен другим

2435. Биологическое явление, характерное для биосферного уровня организации живого, –
А) воспроизведение себе подобных
Б) обмен генетической информацией при свободном скрещивании
В) проявление гетерозиса у растений
Г) круговорот веществ и поток энергии

2436. Среди указанных формулировок определите положение клеточной теории
А) Аллельные гены в процессе мейоза оказываются в разных половых клетках
Б) Клетки всех организмов сходны по химическому составу и строению
В) Оплодотворение представляет собой процесс соединения мужской и женской клеток
Г) Онтогенез – это развитие организма с момента оплодотворения яйцеклетки до смерти организма

2437. Какой организм по способу питания относят к гетеротрофам?
А) хламидомонаду
Б) ламинарию
В) пеницилл
Г) хлореллу

2438. Дигомозиготное растение гороха с желтыми круглыми семенами (доминантные признаки) имеет генотип
А) ААВВ
Б) ааbb
В) АаВb
Г) ААbb

2439. Близнецы человека, развившиеся в результате оплодотворения двух яйцеклеток,
А) всегда одинакового пола
Б) отличаются по генотипу
В) имеют всегда одинаковый фенотип
Г) абсолютно похожи друг на друга

2440. Рождение ребенка с синдромом Дауна – это пример проявления изменчивости
А) модификационной
Б) комбинативной
В) цитоплазматической
Г) геномной

Самая передняя часть глаза называется роговица . Она прозрачная (пропускает свет) и выпуклая (преломляет свет).

За роговицей находится радужная оболочка , в центре которой расположено отверстие – зрачок. Радужная оболочка состоит из мышц, которые могут изменять размер зрачка, и таким образом регулировать количество света, поступающего в глаз. В состав радужной оболочки входит пигмент меланин, который поглощает вредные ультрафиолетовые лучи. Если меланина много, то глаза получаются карие, если среднее количество – зеленые, если мало – голубые.

За зрачком располагается хрусталик . Это прозрачная капсула, заполненная жидкостью. За счет собственной упругости хрусталик стремится стать выпуклым, при этом глаз фокусируется на близких предметах. При расслаблении ресничной мышцы связки, удерживающие хрусталик, натягиваются и он становится плоским, глаз фокусируется на дальних предметах. Такое свойство глаза называется аккомодация.

За хрусталиком располагается стекловидное тело , заполняющее глазное яблоко изнутри. Это третий, последний компонент преломляющей системы глаза ( роговица – хрусталик – стекловидное тело ).

За стекловидным телом, на внутренней поверхности глазного яблока располагается сетчатка . Она состоит из зрительных рецепторов – палочек и колбочек. Под действием света рецепотры возбуждаются и передают информацию в мозг. Палочки находятся в основном на периферии сетчатки, они дают только черно-белое изображение, но зато им достаточно слабого освещения (могут работать в сумерках). Зрительный пигмент палочек – родопсин, производное витамина А. Колбочки сосредоточены в центре сетчатки, они дают цветное изображение, требуют яркого света. В сетчатке имеются два пятна: желтое (в нем самая высокая концентрация колбочек, место наибольшей остроты зрения) и слепое (в нем рецепторов нет совсем, из этого места выходит зрительный нерв).

За сетчаткой (сетчатой оболочкой глаза, самой внутренней) расположена сосудистая оболочка (средняя). Она содержит кровеносные сосуды, питающие глаз; в передней части она видоизменяется в радужную оболочку и ресничную мышцу .

За сосудистой оболочкой располагается белочная оболочка , покрывающая глаз снаружи. Она выполняет функцию защиты, в передней части глаза она видоизменена в роговицу .

Еще можно почитать

Тесты и задания

Выберите один, наиболее правильный вариант. Функция зрачка в организме человека состоит в

1) фокусировании лучей света на сетчатку

2) регулировании светового потока

3) преобразовании светового раздражения в нервное возбуждение

4) восприятии цвета

Выберите один, наиболее правильный вариант. Черный пигмент, поглощающий свет, располагается в органе зрения человека в

2) сосудистой оболочке

3) белочной оболочке

4) стекловидном теле

Выберите один, наиболее правильный вариант. Энергия световых лучей, проникших в глаз, вызывает нервное возбуждение

2) в стекловидном теле

3) в зрительных рецепторах

4) в зрительном нерве

Выберите один, наиболее правильный вариант. За зрачком в органе зрения человека располагается

1) сосудистая оболочка

2) стекловидное тело

Установите путь прохождения луча света в глазном яблоке

2) стекловидное тело

Выберите один, наиболее правильный вариант. Светочувствительные рецепторы глаза – палочки и колбочки – находятся в оболочке

1. Выберите три правильных варианта: к светопреломляющим структурам глаза относятся:

4) стекловидное тело

2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Оптическая система глаза состоит из

2) стекловидного тела

3) зрительного нерва

4) жёлтого пятна сетчатки

6) белочной оболочки

Преломление лучей в глазном яблоке осуществляется с помощью

1) слепого пятна

2) жёлтого пятна

Выберите три верно обозначенные подписи к рисунку «Строение глаза». Запишите цифры, под которыми они указаны.

2) стекловидное тело

3) радужная оболочка

4) зрительный нерв

Установите последовательность расположения структур глазного яблока, начиная с роговицы. Запишите соответствующую последовательность цифр.

1) нейроны сетчатки

2) стекловидное тело

3) зрачок в пигментной оболочке

4) светочувствительные клетки-палочки и колбочки

5) выпуклая прозрачная часть белочной оболочки

Установите соответствие между зрительными рецепторами и их особенностями: 1) колбочки, 2) палочки. Запишите цифры 1 и 2 в правильном порядке.

А) воспринимают цвета

Б) активны при хорошем освещении

В) зрительный пигмент родопсин

Г) осуществляют черно-белое зрение

Д) содержат пигмент йодопсин

Е) по сетчатке распределены равномерно

Установите последовательность прохождения сигналов по сенсорной зрительной системе. Запишите соответствующую последовательность цифр.

2) зрительная зона коры мозга

3) стекловидное тело

4) зрительный нерв

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Отличия дневного зрения человека по сравнению с сумеречным состоят в том, что

1) работают колбочки

2) различение цветов не осуществляется

3) острота зрения низкая

4) работают палочки

5) различение цветов осуществляется

6) острота зрения высокая

Выберите один, наиболее правильный вариант. При рассматривании предмета глаза человека непрерывно двигаются, обеспечивая

1) предупреждение ослепления глаза

2) передачу импульсов по зрительному нерву

3) направление световых лучей на желтое пятно сетчатки

4) восприятие зрительных раздражений

Выберите один, наиболее правильный вариант. Зрение человека зависит от состояния сетчатки, так как в ней расположены светочувствительные клетки, в которых

1) образуется витамин А

2) возникают зрительные образы

3) черный пигмент поглощает световые лучи

4) формируются нервные импульсы

Установите последовательность прохождения светового сигнала к зрительным рецепторам. Запишите соответствующую последовательность цифр.

17 апреля Кратко о специальной теории относительности.

14 апреля Вариант резервного дня ЕГЭ по математике.

13 апреля Вариант досрочного ЕГЭ по физике.

12 апреля Вариант досрочного ЕГЭ по информатике.

25 декабря На нашем сайте размещён курс русского языка Людмилы Великовой.

− Учитель Думбадзе
из школы 162 Кировского района Петербурга.

Наша группа ВКонтакте
Мобильные приложения:

Установите соответствие между функцией глаза и оболочкой, которая эту функцию выполняет.

3) сетчатка

А) защита от механических и химических повреждений

Б) снабжение глазного яблока кровью

В) поглощение световых лучей

Г) участие в восприятии света

Д) преобразование раздражения в нервные импульсы

ОБОЛОЧКИ ГЛАЗА ФУНКЦИИ ОБОЛОЧЕК

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A Б В Г Д

Белочная оболочка защищает глаз. Сосудистая питает глаз, а на внутренней поверхности этой оболочки тонким слоем лежит красящее вещество — черный пигмент, который поглощает световые лучи. Сетчатка воспринимает раздражение и преобразует их в нервные импульсы.

Какой имен­но чер­ный пиг­мент внут­ри со­су­дов глаза, ко­то­рый по­гло­ща­ет све­то­вые лучи? (Для чего это нужно?)

Собственно сосудистая оболочка — самая обширная часть сосудистого тракта глазного яблока — богата темным пигментом, который находится в специальных клетках – хроматофорах.

Пигмент очень важен для зрения, так как световые лучи, попадающие через открытые участки радужки или склеры, мешали бы хорошему зрению из-за разлитого освещения сетчатки или боковых засвет. Количество пигмента, содержащегося в этом слое, кроме того, определяет интенсивность окраски глазного дна.

Пигментный эпителий сетчатки (англ. retinal pigment epithelium; RPE) — один из десяти слоев сетчатки позвоночных. Представляет собой слой пигментированных эпителиальных клеток, который находится вне нервной части сетчатки (pars nervosa); он обеспечивает питательными веществами фоторецепторы и плотно связан с нижележащей сосудистой оболочкой и слабо — с фотосенсорным слоем (находится над ним). Пигментный эпителий сетчатки собственно и представляет собой пигментную часть сетчатки (pars pigmentosa)

Таким образом, излишек фотонов поглощается сетчаткой, а не сосудистой оболочкой.

В Вашей же ссылке и написано: «плот­но свя­зан с ни­же­ле­жа­щей со­су­ди­стой обо­лоч­кой и слабо — с фо­то­сен­сор­ным слоем»

И вообще, Википедия — не надежный источник информации

Некорректно задан вопрос.

Пункт «поглощение световых лучей» можно соотнести с сетчаткой, так как в сетчатке есть клетки палочки и колбочки, содержащие пигменты. Эти клетки улавливают свет.

Радужка (т.е. сосудистая оболочка) тоже поглощает свет пигментом меланином.

Но для получения изображения используется тот свет, который поглощает сетчатка. «Более правильный» ответ — сетчатка.

Пигментный эпителий сетчатки (англ. retinal pigment epithelium; RPE) — один из десяти слоев сетчатки позвоночных. Представляет собой слой пигментированных эпителиальных клеток, который находится вне нервной части сетчатки (pars nervosa); он обеспечивает питательными веществами фоторецепторы и плотно связан с нижележащей сосудистой оболочкой и слабо — с фотосенсорным слоем (находится над ним). Пигментный эпителий сетчатки собственно и представляет собой пигментную часть сетчатки (pars pigmentosa),Таким образом, излишек фотонов поглощается сетчаткой, а не сосудистой оболочкой.ответ должен быть 12333

Цвет пигментов

Цвет пигментов определяется совокупностью явлений рассеяния и поглощения света их частицами. В случае селективного поглощения света частицами пигмента на каком-либо участке видимой области спектра электромагнитных колебаний рассеянный свет, попадающий в органы зрения человека, вызывает ощущения цвета. Видимая область спектра приходится на интервал частот электромагнитных колебаний от 4,0*1014 до 7,9*1014с-1 (длины волн 760—380 нм). Объект, равномерно рассеивающий либо полностью или частично поглощающий свет во всей видимой области спектра, является бесцветным (белым, черным или серым). Если вещество поглощает какую-то часть спектра, то оно будет окрашено в цвет, дополнительный к поглощенному. Дополнительными называют цвета, способные при сложении давать белый цвет. Ниже показана зависимость цвета вещества от цвета и длины волны поглощенного света:

Цвет поглощенного света Длина волны погло щенного света, нм Цвет вещества
Фиолетовый 400—435 Желто-зеленый
Синий 435—490 Желтый
Голубовато-зеленый 490—510 Красный
Зеленый 510—560 Пурпурный
Желто-зеленый 560—580 Фиолетовый
Желтый 580—595 Синий
Оранжевый 595—610 Зеленовато-голубой
Красный 610—750 Сине-зеленый

Как известно, свет определенной длины волны (определенной частоты или, следовательно, определенной энергии) поглощается в том случае, если его энергия соответствует энергии перехода электрона в более высокое энергетическое состояние. Частота электромагнитных колебаний, которые могут вызвать переход электрона с более низкого энергетического уровня на более высокий, определяется вторым квантовым уравнением Бора, так называемым частотным уравнением:

где Е1— энергия атома в исходном состоянии; Е2 — энергия атома в возбужденном состоянии; h — постоянная Планка; n — частота.

В любом случае, для того чтобы соединение было окрашенным, необходимо наличие электронов в атоме, которые могут быть подняты на более высокий уровень таким образом, чтобы частота n из второго квантового уравнения Бора соответствовала области видимого света. Электронные переходы, удовлетворяющие этому условию, могут иметь различный характер.

ПЗ-Переход. Цвет многих кристаллических соединений обусловлен электронными переходами с молекулярных орбиталей, локализованных преимущественно на лигандах, на орбитали, локализованные на атоме металла. Такой переход носит название перехода с переносом заряда от лиганда на металл (ПЗ-переход). Этот переход наиболее энергетически возможен, если кристаллическая решетка состоит из сильно поляризующих катионов и сильно поляризующихся анионов. Для этого нужно, чтобы катионы имели небольшой ионный радиус и высокую валентность, а анионы — большой ионный радиус и низкую валентность. Увеличение поляризуемости аниона и поляризующей способности катиона приводит к снижению энергии, необходимой для осуществления перехода, т. е. сдвигает максимум поглощения света в длинноволновую область (батохромный эффект). Так, например, происходит углубление окраски при переходе от РbО к РbO2, вызванное уменьшением ионного радиуса свинца от 1,26 до 0,76 и возрастанием степени окисления свинца. Такое же явление наблюдается при переходе от Fе(ОН)2 к Fе(ОН)3 (ионные радиусы железа 0,8 и 0,67 соответственно). ПЗ-Переходом обусловлена окраска таких важнейших групп хроматических пигментов, как крона (пигменты, в состав которых входит ион CrO42 — ) и железооксидные пигменты.

Читайте также:  Портит ли зрение очки если зрение нормальное

dd — Переход. Поскольку энергия видимого света сравнительно невелика, то, следовательно, необходимым условием окрашенности соединения является наличие так называемых рыхлосвязанных электронов. Как правило, легче возбуждаются электроны в ионах с незавершенной электронной оболочкой. Так, почти все соединения элементов побочных подгрупп периодической системы являются окрашенными. Иными словами, окрашенными обычно являются соединения элементов с незавершенными d-орбиталями.

Каждый электронный слой с главным квантовым числом 3 имеет набор из пяти d-орбиталей, отличающихся пространственным расположением. Если катион d-элемента не находится в окружении заряженных групп, то все пять орбиталей энергетически эквиваленты. Таким образом, d-электрон может с одинаковой вероятностью находиться на любой из пяти орбиталей. Однако, если катион находится под влиянием электростатического поля отрицательных зарядов, окружающих его и расположенных в вершинах октаэдра, тетраэдра или занимающих в пространстве другие фиксированные положения, d-орбитали энергетически не эквиваленты. Наиболее энергетически выгодными будут орбитали, максимально удаленные от отрицательных зарядов, т. е. будет иметь место так называемое расщепление d-орбиталей в электростатическом кристаллическом поле на уровни разной энергии. Переход электрона с одного уровня на другой вследствие расщепления d-орбиталей в электростатическом кристаллическом поле носит название d‑d — перехода.

d‑d — Переходом обусловлена зеленая окраска оксида хрома (III) и изумрудной зелени, где ион Сг3+ имеет строение внешнего электронного слоя 3S23р63d3 и его основное состояние расщепляется в поле лигандов на три уровня.

Переход электрона с катиона более низкой валентности на катион более высокой валентности. Пигменты, в состав которых входят металлы в разных валентных состояниях, всегда интенсивно окрашены. К таким пигментам относятся свинцовый сурик Рb3О4, являющийся свинцовой солью ортосвинцовой кислоты, черный железооксидный пигмент Fе3О4, кристаллическая решетка которого представляет собой кубическую плотную упаковку ионов кислорода, в пустотах которой распределены ионы Fе2+ и Fе3+. Окраска этих соединений обусловлена переходом электрона с иона более низкой валентности на ион более высокой валентности.

Электронные переходы, вызванные дефектами кристаллической структуры. Цвет кристаллического вещества может определяться наличием в нем точечных дефектов, которые служат причиной появления добавочных энергетических уровней; соответствующие им электронные переходы могут происходить под действием электромагнитного излучения видимой части спектра. Центром окраски может быть анионная вакансия, которая, действуя как положительный заряд, захватывает свободный электрон, поставляемый каким-либо примесным атомом; такой центр окраски называют F-центром. Центром окраски может являться совокупность катионной вакансии и дырки; такой центр называется V-центром. Могут быть и более сложные центры, состоящие из двух анионных вакансий и электрона или совокупности F-центра, катионной и анионной вакансий.

Наличием центров окраски определяется цвет ультрамарина, кристаллическая решетка которого представляет собой решетку алюмосиликата. Эта решетка состоит из общих для двух тетраэдров атомов кислорода и чередующихся атомов кремния и алюминия. Вследствие меньшей валентности алюминия алюмосиликатный каркас заряжен отрицательно, катионы натрия, уравновешивающие отрицательный заряд каркаса, равномерно распределены внутри него. Кроме катионов внутри каркаса содержатся ионы или радикалы серы. Наличие серы в пустотах кристаллической решетки ультрамарина приводит к появлению широкой полосы поглощения в длинноволновой области видимой части спектра.

Электронные переходы, обусловливающие цвет органических соединений. В соответствии с теорией молекулярных орбиталей, образование s — и p-связей в молекуле в общем случае приводит к реализации набора молекулярных орбиталей, характеризующихся различным распределением электронных плотностей между ядрами атомов. Орбитали с максимальной электронной плотностью между атомами обладают меньшей энергией, нежели орбитали с минимальной электронной плотностью. Орбитали с меньшей энергией называют связывающими, орбиталм с большей энергией — разрыхляющими. Если в молекуле имеются атомы со свободными электронными нарами, не принимающими участия в образовании связей, то они находятся на несвязывающей орбитали (n). Энергетические уровни соответствующих орбиталей возрастают в следующем порядке:

Поглощение света молекулой вызывает переход электронов в ней на более высокий энергетический уровень. Вещество будет поглощать свет в видимой части спектра, если возможны переходы электрона под действием электромагнитного излучения соответствующей энергии. Переход s ‑ s*, наиболее характерный для насыщенных углеводородов, совершается с поглощением энергии, соответствующей дальней УФ-области спектра. p— p*-переходы, характерные для ненасыщенных органических соединений, требуют меньших энергий. Однако в случае изолированных двойных связей поглощение света происходит в УФ-области, и лишь при наличии сопряжения повышение энергии p-уровня может привести к такому снижению энергии этого перехода, что он будет происходить под действием света видимой части спектра. Удлинение системы сопряжения вызывает батохромный эффект.

В гетероорганических соединениях неподеленные электроны азота, кислорода, серы способны к n — p* и n — s* переходам, требующим сравнительно малых энергий. По этой причине большинство гетероорганических соединений поглощают свет в видимой и ближней УФ-области.

Присоединение к системе сопряжения поляризующих заместителей, смещающих p-электроны в невозбужденном состоянии по цепи сопряжения, приводит к снижению энергии p— p* перехода и вызывает батохромный эффект. Введение в молекулу таких заместителей кроме смещения полосы поглощения в длинноволновую область вызывает также и повышение максимума абсорбции света (гиперхромный эффект).

На цвет органических соединений оказывают влияние и пространственные факторы. Так, искажение формы молекулы (углов между направлениями связей) повышает энергетический уровень молекулы в основном состоянии, снижает энергию перехода в возбужденное состояние и вызывает тем самым батохромный эффект. Однако, если возможен поворот одной части молекулы относительно другой, и введение какого-либо заместителя нарушает плоскостную структуру молекулы красителя, то это приводит к гипохромному эффекту из-за разобщения отдельных участков цепи сопряжения.

Итак, цвет вещества зависит от положения полосы поглощения в видимой части спектра. Однако на цвет пигмента в большой степени влияют форма и размер частиц, так как суммарное цветовое ощущение определяется не только спектром поглощения, но и характером рассеяния света частицами пигмента. Так, увеличение размера частиц свинцового оранжевого и красного свинцово-молибдатного кронов приводит к смещению максимума отражательной способности пигмента в длинноволновую область, т. е. к усилению красного оттенка. Рост кристаллов при синтезе желтого железооксидного пигмента ведет к сильному потемнению продукта. Варьируя размеры частиц красного железооксидного пигмента, можно получить целую гамму оттенков.

Большое влияние на цвет пигмента оказывает кристаллическая структура.

Преобразование энергии света в сетчатке

В связи с инверсией сетчатки решаются две задачи: 1) обеспечение максимальной прозрачности клеток, расположенных на пути прохождения света к фоторецепторам, 2) выделение в слое фоторецепторов промежутка для прохождения волокон зрительного нерва.
Решение первой задачи заключается в анатомическом устройстве центральной ямки, где биполярные и ганглиозные клетки сетчатки располагаются вокруг нее, а их относительно прозрачные безмиелиновые волокна не мешают прохождению света к фоторецепторам. В других областях сетчатки световые лучи отчасти рассеиваются при прохождении сквозь тела клеток, расположенных перед фоторецепторами, но в центральной ямке кванты света без помех попадают на фоторецепторы, представленные здесь преимущественно колбочками. При направленном на определенный объект зрительного поля внимании его изображение всегда фокусируется в центральной ямке для обеспечения максимальной остроты зрения.
Сосок зрительного нерва образован аксонами ганглиозных клеток, отсутствие в этой области фоторецепторов делает ее не чувствительной к свету, в связи с чем она получила название слепого пятна. На соски правого и левого глаза благодаря диспарации попадают неодинаковые части проецируемого изображения, поэтому в условиях естественного зрительного восприятия пробел изображения на сетчатке не осознается. Кроме того, быстрые движения глаз позволяют получать нужную информацию о любой области рассматриваемого изображения, и отсутствие сигналов от слепого пятна замещается информацией, поступившей от ближайших к нему фоторецепторов. Скотопическая и фотопическая системы сетчатки
Фоторецепторный слой сетчатки человека образован примерно 130 миллионами клеток, из которых около семи миллионов являются колбочками, основная масса которых сосредоточена в области центральной ямки, а все остальные фоторецепторы представлены палочками. У обеих разновидностей фоторецепторов существуют три функциональные области: 1) наружный, или внешний, сегмент, ориентированный в направлении эпителиального пигментного слоя и содержащий зрительный пигмент; 2) внутренний сегмент, в котором расположено клеточное ядро и происходят биохимические процессы, связанные с жизнедеятельностью клетки; 3) синаптические окончания, предназначенные для передачи информации от фоторецепторов к биполярным клеткам с помощью медиатора глутамата.
Зрительный пигмент палочек родопсин состоит из двух компонентов: это молекула ретиналя, образующаяся из витамина А и способная поглощать свет, а также крупная белковая молекула опсина, не поглощающая свет. Молекула опсина представляет собой извитую цепь из 348 аминокислот, которая семь раз проходит через мембрану зрительного диска, образованного из клеточной мембраны фоторецептора. В наружном сегменте фоторецептора имеется большое количество таких дисков, расположенных подобно стопке поставленных друг на друга монет. Ретиналь существует в темноте как 11-цис-ретиналь, такая форма изомера идеально соответствует упорядоченному расположению аминокислот в опсине. Энергия поглощенных фотонов превращает ретиналь в 11-транс-изомер, что приводит к конформационным изменениям молекулы опсина и превращению родопсина в нестабильный метародопсин, который сразу же распадается на ретиналь и опсин. Таким образом, действие света уменьшает концентрацию родопсина в фоторецепторе, что приводит к изменениям активности вторичных посредников и величины мембранного потенциала фоторецептора. В темноте происходит ферментативный ресинтез расщепленного родопсина, для которого используется витамин А, поступающий в организм человека с пищей.
Родопсин наиболее чувствителен к электромагнитным волнам длиной около 500 нм, но хорошо поглощает и другие волны в диапазоне от 400 до 600 нм. Способность родопсина поглощать волны почти всего светового диапазона позволяет палочкам обеспечить только ахроматическое, т. е. черно-белое, зрение и лишает их возможности различать цвет. Высокое содержание зрительного пигмента в палочках и его способность суммировать фотоны, поглощенные в течение около 100 мс, делает палочки наиболее чувствительными фоторецепторами сетчатки. При слабом сумеречном освещении зрение обеспечивают только палочки, способные возбуждаться вследствие поглощения всего лишь одного фотона. Палочки образуют ско- топическую систему, или систему ночного зрения.
Зрительные пигменты колбочек подобны родопсину палочек и состоят


Рис. 17.7. Спектры поглощения четырех разновидностей фоторецепторов.
Зрительный пигмент палочек родопсин (Р) имеет максимум поглощения световых волн длиною 496 нм, но способен также к поглощению коротких и длинных волн светового диапазона. Зрительный пигмент колбочек, чувствительных к синему цвету (С), имеет максимум поглощения 419 нм и не поглощает длинные волны оптического диапазона. Пигмент колбочек, чувствительных к зеленому цвету (3), имеет максимум поглощения при 531 нм, а пигмент чувствительных к красному цвету колбочек (К) максимально поглощает волны длиной 596 нм.

из светопоглощающей молекулы ретиналя и опсина, который отличается составом аминокислот от белковой части родопсина. Кроме того, колбочки содержат меньшее, чем палочки, количество зрительного пигмента, и для их возбуждения требуется энергия нескольких сотен фотонов. Поэтому колбочки активируются лишь при дневном или достаточно ярком искусственном освещении, они образуют фотопическую систему, или систему дневного зрения.
В сетчатке человека существуют три типа колбочек, различающихся между собой по составу аминокислот в опсине зрительного пигмента. Различия в белковой части молекулы определяют особенности взаимодействия каждой из трех форм опсина с ретиналем и специфическую чувствительность к световым волнам разной длины (рис. 17.7). Колбочки одного из трех типов максимально поглощают короткие световые волны с длиной 419 нм, что необходимо для восприятия синего цвета. Другой тип зрительного пигмента наиболее чувствителен к волнам средней длины и имеет максимум поглощения при 531 нм, он служит для восприятия зеленого цвета. Третий тип зрительного пигмента максимально поглощает длинные волны с максимумом при 559 нм, что позволяет воспринимать красный цвет. Наличие трех типов колбочек обеспечивает человеку восприятие всей цветовой палитры, в которой существует свыше семи миллионов цветовых градаций, тогда как скотопическая система палочек позволяет различать лишь около пятисот черно-белых градаций.
Рецепторный потенциал палочек и колбочек
Специфической особенностью фоторецепторов является темповой ток катионов через открытые мембранные каналы внешних сегментов (рис. 17.8). Эти каналы открываются при высокой концентрации циклического гуано- зинмонофосфата, который является вторичным посредником рецепторного белка (зрительного пигмента). Темновой ток катионов деполяризует мембрану фоторецептора до приблизительно —40 мВ, что приводит к выделению медиатора в его синаптическом окончании. Активированные поглощением света молекулы зрительного пигмента стимулируют активность фос- фодиэстеразы — фермента, расщепляющего цГМФ, поэтому при действии света на фоторецепторы в них уменьшается концентрация цГМФ. В результате управляемые этим посредником катионные каналы закрываются, и ток катионов в клетку прекращается. Вследствие непрерывного выхода ионов калия из клеток, мембрана фото
рецепторов гиперполяризуется приблизительно до —70 мВ, эта гиперполяризация мембраны является рецепторным потенциалом. При возникновении рецепторного потенциала прекращается выделение глутамата в синаптических окончаниях фоторецептора.
Фоторецепторы образуют синапсы с биполярными клетками двух типов, различающихся по способу управления хемозависи- мыми натриевыми каналами в синапсах. Действие глутамата приводит к открытию каналов для ионов натрия и деполяризации мембраны одних биполярных клеток и к закрытию натриевых каналов и гиперполяризации биполярных клеток другого типа. Наличие двух типов биполярных клеток необходимо для формирования антагонизма между центром и периферией рецептивных полей ганглиозных клеток. Адаптация
фоторецепторов к изменениям освещенности
Временное ослепление при быстром переходе от темноты к яркому освещению исчезает спустя несколько секунд благодаря процессу световой адаптации. Одним из механизмов световой адаптации является рефлекторное сужение

Читайте также:  Как влияет цвет глаз на зрение

зрачков, другой зависит от концентрации ионов кальция в колбочках. При поглощении света в мембранах фоторецепторов закрываются катионные каналы, что прекращает вхождение ионов натрия и кальция и уменьшает их внутриклеточную концентрацию. Высокая концентрация ионов кальция в темноте подавляет активность гуанилатциклазы — фермента, определяющего образование цГМФ из гуанозинтрифосфата. Вследствие снижения концентрации кальция, обусловленного поглощением света, активность гуанилатциклазы повышается, что ведет к дополнительному синтезу цГМФ. Повышение концентрации этого вещества приводит к открытию катионных каналов, восстановлению тока катионов в клетку и, соответственно, способности колбочек отвечать на световые раздражители как обычно. Низкая Концентрация ионов кальция способствует десенситизации колбочек, т. е. уменьшению их чувствительности к свету. Десенситизация обусловлена изменением свойств фосфодиэстеразы и белков катионных каналов, становящихся менее чувствительными к концентрации цГМФ.
Способность различать окружающие предметы исчезает на некоторое время при быстром переходе от яркого света к темноте. Она постепенно восстанавливается в ходе темповой адаптации, обусловленной расширением зрачков и переключением зрительного восприятия с фотопической системы на скотопическую. Темновую адаптацию палочек определяют медленные изменения функциональной активности белков, приводящие к повышению их чувствительности. В механизме темновой адаптации участвуют и горизонтальные клетки, способствующие увеличению центральной части рецептивных полей в условиях низкой освещенности.

Органы чувств (Анализаторы)

Органы чувств обеспечивают восприятие различных раздражений, действующих на организм, и служат для приспособления к меняющимся условиям окружающей среды. По характеру, воспринимаемых раздражителей анализаторы разделяются на дистантные, т. е. действующие на расстоянии (зрение, слух), и контактные (осязание, вкус). По виду энергии раздражителя анализаторы подразделяются на химические (вкус, обоняние), механические (слух, осязание), световые (зрение).

Орган зрения

Глазное яблоко покрыто снаружи плотной белочной оболочкой — склерой, которая соединяется со слизистой оболочкой внутренней стороны века. Впереди склера переходит в прозрачную роговицу, через которую в глаз проникает свет. Под склерой находится сосудистая оболочка, пронизанная кровеносными сосудами. Ее внутренний слой содержит слой красящего вещества — чёрного пигмента, поглощающего черные лучи. Позади роговицы сосудистая оболочка переходит в радужную оболочку и ресничное тело, где расположена ресничная мышца, регулирующая кривизну хрусталика. Круглое отверстие внутри радужной оболочки — зрачок, способен менять свои размеры в зависимости от интенсивности света. Внутренняя стенка глаза выстлана тонкой оболочкой — сетчаткой, в которой находятся зрительные рецепторы: колбочки и палочки.

Внутреннее ядро глазного яблока образует вместе с роговицей оптическую систему глаза и состоит из хрусталика, стекловидного тела и водянистой влаги передней и задней камер глаза. Прозрачный и эластичный хрусталик, расположенный позади зрачка, имеет форму двояковыпуклой линзы. Он вместе с внутриглазными жидкостями преломляет лучи света, входящие внутрь глаза, и фокусирует их на сетчатке. На сетчатке образуется уменьшенное перевернутое изображение предмета. Мы видим прямое изображение предметов благодаря коррекции со стороны мозговых центров.

Органы слуха

В органе слуха различают наружное, среднее и внутреннее ухо. Наружное ухо состоит из ушной раковины и наружного слухового прохода. Оно обеспечивает улавливание и проведение звуковой волны к барабанной перепонке. Среднее ухо расположено внутри височной кости и состоит из полости, где находятся слуховые косточки — молоточек, наковальня и стремечко, и слуховой трубы (евстахиевой трубы), соединяющей среднее ухо с носоглоткой. Молоточек соединен с барабанной перепонкой, стремечко — с перепонкой овального окошка слуховой улитки. Слуховые косточки, взаимодействуя как рычаги, передают колебания от барабанной перепонки к жидкости, заполняющей внутреннее ухо. Внутреннее ухо состоит из улитки, системы трех, полукружных каналов, образующих, костной лабиринт, в котором расположен перепончатый лабиринт, заполненный жидкостью. В спирально завитой улитке помещаются слуховые рецепторы — волосковые клетки. Звуковые волны проходят через наружный слуховой проход и вызывают колебания барабанной перепонки, которые через слуховые косточки передаются на овальное окошко внутреннего уxa и вызывают колебания заполняющей его жидкости. Эти колебания преобразуются слуховыми рецепторами в нервные импульсы, которые передаются по слуховому нерву в слуховую зону, коры больших полушарий.

Органы равновесия

Система трёх полукружных каналов, овальный и круглый мешочки образуют вестибулярный аппарат. Возбуждения возникают в рецепторах этого органа и поступают в нервные центры, осуществляющие перераспределение тонуса и сокращение мышц. В результате поддерживается равновесие и положение тела в пространстве. Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. 3aполнены студенистой жидкостью. Внутри каналов находятся волосковые рецепторы. При любом смещении головы жидкость в каналах движется, вовлекая в движение волоски, что приводит к возбуждению рецепторов.

Мышечное чувство возникает при paстяжении или сокращения мышц, благодаря чему мы способны совершать произвольные движения.

Кожное чувство слагается из нескольких анализаторов. Осязание — сложное чувство, связанное с прикосновением, к предметам. В нем участвует тактильное чувство.

Обоняние осуществляется с помощью рецепторов, которые находятся в слизистой оболочке носовой полости. Клетки этих рецепторов имеют постоянно колеблющиеся реснички. Каждая обонятельная клетка способна обнаружить вещество определенного состава. При взаимодействии с ним она посылает нервные импульсы в мозг.

Вкусовые рецепторы расположены в слизистой оболочке языка. Вкусовые сосочки имеют грибовидную, желобоватую и листовую форму. Каждый сосочек сообщается с ротовой полостью небольшим отверстием — порой.

Зрение — способность животных получать информацию о внешнем мире благодаря чувствительности к световым волнам, отражаемым или излучаемым окружающими объектами, и при помощи нервной обработки строить модель этого мира. Зрение, наряду с другими рецепторными системами, позволяет животным организовать адекватное поведение. Оно используется при добывании пищи, поисках брачного партнера, ориентации в пространстве, в коммуникативном и оборонительном поведении.

Органы зрения

Светочувствительностью обладают многие организмы: некоторые бактерии (родопсиновые), простейшие, кишечнополостные, черви. Светочувствительные клетки расположены по краю купола медузы, в покровах дождевого червя, у ресничного червя планарии они собраны на головном конце тела в специальных вмятинах. У этих организмов можно наблюдать реакции положительного или отрицательного фототаксиса. Так, двустворчатый моллюск тридакна закрывает створки, если на нее быстро надвинется тень. Но, пожалуй, это еще трудно назвать настоящим зрением.

Подавляющее большинство позвоночных и беспозвоночных имеет специальные сложно устроенные органы зрения — глаза. В глазу собственно светочувствительные клетки образуют один из слоев сетчатки, в которой производится первичная обработка изображений внешнего мира, создаваемых на ней оптическим аппаратом глаза. Из сетчатки информация в виде последовательностей нервных импульсов поступает по зрительным нервам для дальнейшей обработки в мозговые отделы зрительной системы. У позвоночных и многих беспозвоночных глаза парные. Механизмы бинокулярного зрения за счет сопоставления информации, поступающей от двух глаз, позволяют получить более точное и богатое представление об объемной форме предметов и их взаимном расположении, чем при рассматривании одним глазом (монокулярно).

Как видят разные животные

Неверно бытующее представление, что только у человека, как у представителя высшей ступени эволюционной лестницы, хорошее зрение. Зрение адаптивно. В процессе эволюции у каждого биологического вида сформировался такой зрительный аппарат, который помогает своему обладателю выжить в его среде обитания. Адаптации зрительной системы к условиям жизни затрагивают и оптику, и рецепторный аппарат, и зрительные пигменты, поэтому разные животные видят мир по-разному и по-своему. Видимая область спектра и способность различать цвета — цветовое зрение— зависят от того, какие зрительные пигменты и сколько их находится в зрительных рецепторах этого животного — его палочковых и колбочковых клетках. Так, морские рыбы и наземные позвоночные видят, т. е. воспринимают световые колебания в диапазоне длин волн в области 380-650 нм, а пресноводные рыбы и болотные черепахи — 400-730 нм. У насекомых и некоторых птиц, рептилий и рыб есть специальный пигмент, чувствительный к ультрафиолету. К настоящему времени изучены зрительные пигменты сотен видов животных. Практически все животные, живущие в условиях хорошего освещения (водные и наземные, позвоночные и беспозвоночные) обладают цветовым зрением. Животные, активные не только днем, но и в сумерки, имеют в сетчатке высокочувствительные рецепторы — палочки. Строго ночные животные (например, опоссум и глубоководные рыбы) имеют чисто палочковую сетчатку. Насекомые, благодаря специальному строению фоторецепторной мембраны и особому расположению в ней зрительного пигмента, различают плоскости поляризации света. Такой способностью обладают и некоторые рыбы, в то время как люди могут обнаружить ультрафиолетовое излучение или поляризованный свет лишь с помощью специальных приборов.

Как формируется зрительный образ

Результатом работы зрительной системы является формирование модели окружающего мира. Эти модели у животных, находящихся на разных ступенях эволюции, существенно различаются, так же как и диапазоны воспринимаемых ими сигналов, и «вычислительные» ресурсы зрительных отделов мозга. В модели мира каждого животного должны быть в первую очередь представлены те объекты и события, которые имеют для него жизненно важное значение. Форма, размер, отражательные характеристики объектов, их положение в пространстве относительно друг друга и наблюдателя, степень жесткости, характер движения определяются с достаточной точностью, даже вопреки действию многих мешающих факторов. Чтобы один и тот же объект узнавался при разном освещении, в разных ракурсах, на разных расстояниях от глаз и при разном направлении взора, зрительная система имеет специальные механизмы константности (постоянства) восприятия цвета, размера, формы и положения. Эти механизмы обеспечивают сохранение стабильности видимого мира при изменении освещения и при движениях глаз, головы, туловища.

Последовательность мгновенных оптических отображений внешнего мира на глазном дне (точнее, на растре зрительных рецепторов), перекодируемая в сетчатке в последовательность электрических сигналов, служит лишь входом для дальнейшей обработки в зрительных отделах мозга. Продуктом этой обработки является видимая картина мира. Хотя между входными и выходными сигналами имеется определенное соответствие, далеко не всегда правомерно проводить между ними прямые аналогии. Так, удивительно живучи утверждения, будто младенцы видят мир перевернутым, а при наблюдении одним глазом мы воспринимаем мир плоским. Первое из этих заблуждений спровоцировано нашими знаниями о том, что оптическая система глаза человека формирует на глазном дне уменьшенное обратное изображение рассматриваемого окружения. Следуя примитивной логике этого высказывания, надо было бы добавить, что младенцы видят мир находящимся внутри своего черепа и размером меньше шарика для настольного тенниса, да к тому же в двух экземплярах — ведь у нас два глаза. Второе заблуждение обусловлено тем обстоятельством, что с геометрической точки зрения одной проекции объекта недостаточно для восстановления его объемной формы. Но ведь и двух проекций, теоретически, недостаточно. Однако аксиомы геометрии не имеют непосредственного отношения к сущности субъективных моделей мира. Пространственно-временная структура этих моделей, по-видимому, определена генетически. Человек (или животное) лишь заполняет данное ему от рождения ощущение пространства объектами, размеры и положение которых он определяет при помощи разнообразных (и не только зрительных) механизмов, в числе которых есть и монокулярные, и бинокулярные. При наблюдении одним глазом человек может получать представление об объемной форме неподвижных предметов и их взаимном расположении по глубине на основе изменений аккомодации при переводе взгляда с одного предмета на другой, на основе анализа перспективных трансформаций, светотени, градиентов текстуры, заслонения удаленных объектов ближними и других особенностей изображений.

Читайте также:  Лазерная коррекция зрения в махачкале высокие технологии

Общий план строения зрительной системы

При колоссальном разнообразии деталей строения глаз и зрительных мозговых отделов общий план строения зрительной системы, как и принципы нервной обработки зрительных сигналов, по-видимому, общие для всех позвоночных, а может быть, и беспозвоночных животных. Зрительный процесс начинается с поглощения кванта света молекулой зрительного пигмента рецептора. Затем следует сложный многоступенчатый процесс — фототрансдукция, приводящая к генерации электрического потенциала зрительного рецептора, или рецепторного сигнала. Нервная обработка рецепторных сигналов начинается уже в сетчатке глаза и продолжается в специализированных отделах мозга.

Обработка изображения, выделение значимых признаков объекта и отбрасывание несущественных, осуществляется параллельно по многим каналам. Такие разные задачи, как цветоразличение, узнавание формы, размера, стереопсис (объемное видение) требуют разных стратегий, или нервных механизмов. У высших животных отчетливо прослеживается иерархичность в организации зрительной системы. Отдельные ее участки подключаются к обработке сигнала последовательно один за другим, и в этом ряду все больше возрастает степень абстрагирования и сложность отображения объекта.

Главным первичным зрительным центром в мозге низших позвоночных является крыша среднего мозга. Здесь оканчивается подавляющая часть аксонов зрительного нерва, а оставшиеся идут в ядра (коленчатое тело, ядро Беллончи) промежуточного мозга и в ядра дорзального таламуса. У млекопитающих главным обрабатывающим центром становится кора головного мозга. Большая часть зрительных волокон идет в наружное коленчатое тело (многослойное ядро промежуточного мозга). Волокна, выходящие из коленчатого тела, объединяются в один широкий пучок, называемый зрительной радиацией, который и восходит к первичной зрительной коре, называемой еще стриарной корой, расположенной в затылочной части коры. Зоны, связанные с переработкой зрительной информации, обнаружены также в височной, лобной и теменной коре.

Существует соответствие между точками рецепторного растра сетчатки и клетками проекционных зрительных зон мозга, иначе говоря, ретинотопические проекции (карты сетчатки) в зрительных отделах мозга. Это особенно наглядно демонстрирует электрофизиологический опыт на крыше среднего мозга лягушки или рыбы — при перемещении отводящего электрода по поверхности мозга, аналогично смещаются и поля зрения соответствующих нейронов. На складчатой поверхности коры мозга млекопитающих это сложнее выявить.

Первичная обработка изображения

Показано, что в зрительной системе (на разных ее уровнях у разных животных) существуют нейроны, выделяющие значимые признаки изображения, так называемые детекторы. Существуют детекторы малых контрастных подвижных пятен, направления движения, ориентированных линий, затемнения, приближающихся объектов и т. д. У низших позвоночных выделение значимых (ключевых) признаков происходит уже в сетчатке. Выходные нейроны сетчатки — ганглиозные клетки — сообщают в отделы мозга, организующие зрительно обусловленное моторное поведение, сведения о размерах, направлении движения, окраске стимула. В специальных поведенческих экспериментах у стрекозы были обнаружены такие же детекторы направления движения, как и у рыб. Механизмы константного восприятия окраски предметов при изменении освещения одинаковы у пчел, рыб, человека или жабы.

Каждому детектору соответствует специальный тип ганглиозных клеток (см. Сетчатка). Например, охотничье (пищедобывательное) поведение лягушки запускает маленькое подвижное черное пятнышко — стимул, вызывающий реакцию в ганглиозной клетке сетчатки — детекторе пятна. При замене такого стимула на большое темное пятно пищевая форма поведения сменяется на оборонительную, при этом активизируются клетки — детекторы затемнения. В сетчатке рыб насчитывается не менее 10 типов детекторов. Это значит, что обработка изображения в сетчатке у рыб идет одновременно по крайней мере по 10 параллельным каналам. Каждая ганглиозная клетка-детектор связана с определенным набором рецепторных клеток через специальные биполяры, горизонтальные и амакриновые клетки. У высших животных детекторы обнаруживаются электрофизиологами не в сетчатке, а в центральных отделах зрительной системы — в разных проекционных зонах коры. Смысл такого смещения функционально аналогичных элементов от периферических отделов в центральные можно представить следующим образом. Любая специфическая обработка зрительной информации, приводящая к выделению какого-либо одного параметра зрительного стимула, связана с неизбежной и необратимой потерей информации, поэтому такая фильтрация информации у животных с ограниченным набором поведенческих реакций может производиться и в сетчатке. У животных с более сложным поведением в центральные отделы мозга, обладающие большими вычислительными возможностями и способные к более детальной обработке, должна поступать полная, а не профильтрованная сквозь сито детекторов сетчатки информация.

Формирование связей между элементами зрительной системы во многом определено, «запрограммировано» генетически, но в окончательном становлении зрительной системы, особенно ее высших мозговых отделов, большую роль играет и нормальный зрительный опыт. Врачи-офтальмологи знают, что ребенок в возрасте до 7-10 лет, лишенный временно (на несколько дней) возможности смотреть двумя глазами (например, из-за травмы) теряет способность воспринимать глубину, затрудняется при решении стереозадач, у него может развиться скрытое косоглазие. Эти наблюдения подтверждены и в специальных экспериментах на животных. Решение зрительных задач по цветоразличению, узнаванию формы, движению, стереопсису требует, по-видимому, разных нервных механизмов (стратегий), и поэтому существует тенденция разведения их по разным каналам. Так, у лягушки в крыше среднего мозга производится анализ формы, размера, знака контраста, в промежуточном мозге — цвета, в таламусе — направления движения. Есть такое разделение и у высших животных.

Перспективы исследований

Зрительную систему человека и животных исследуют давно. Известна физическая природа стимула — света. Понятно, где начинается процесс восприятия и в каком направлении развивается. Возникает законный вопрос: каким образом вся эта информация в конце концов собирается вместе при восприятии и формировании зрительного образа? Наука пока не дает ответа. Но это не значит, что вопрос принципиально неразрешим. Исследования активно ведутся с разных сторон. Используются разнообразные методы: самонаблюдение, психофизика, сравнительно-физиологические и морфологические исследования на животных разной степени сложности организации, живущих в разных условиях зрительного окружения. Проводятся электрофизиологические, биохимические, гистохимические, электронно-микроскопические, иммунохимические и др. исследования свойств нейронов; генетические и молекулярно-генетические исследования зрительных пигментов. Большие надежды возлагают на моделирование отдельных блоков и зрительного процесса в целом. Например, уже построена математическая модель простой зрительной системы мечехвоста.

Е. М. Максимова, Г. И. Рожкова

Глаз — специализированный орган зрения человека, позвоночных и многих беспозвоночных животных. Существуют глаза камерного типа (глаза позвоночных животных и головоногих моллюсков, простые глазки паукообразных) и фасеточные глаза.

Эволюция глаза

Эволюцию глаза как продукта приспособительного эволюционного развития можно проследить, сравнивая светочувствительные органы животных, стоящих на разных ступенях эволюционной лестницы. Светочувствительным пятном — глазком — обладают некоторые простейшие (жгутиконосцы). Светочувствительные клетки впервые появляются у кишечнополостных и червей. Сначала они рассеяны в поверхностных тканях, затем, по мере усложнения организмов, собираются в скопления, как правило, на переднем конце тела (у животных с билатеральной симметрией), и, наконец, образуют сетчатку. Постепенно светочувствительные клетки «обрастают» сервисными структурами: появляется оптика, фокусирующая изображение на светочувствительных клетках; экранирующий пигмент, снижающий рассеяние света; защитные оболочки; система мышц, обеспечивающих движение, и т. д. — образуется собственно глаз, формирующий изображение. Такие глаза уже более 500 млн. лет назад были у миног и гетеростраков (вымерших бесчелюстных), живших на морском мелководье.

Глаза камерного типа

Устройство глаз камерного типа обычно сравнивают с устройством фотоаппарата или видеокамеры с автоматической системой слежения, автоматически подстраивающейся к уровню освещения (зрачковая реакция, адаптация), самофокусирующейся (аккомодация), с самоочищающейся линзой (веки, слезные железы). У позвоночных глаза парные, расположены в орбитах черепа и приводятся в движение тремя парами мышц, обеспечивающих совместные движения глаз — прослеживание, вергенцию (дивергенция — разведение и конвергенция — сведение оптических осей), фиксацию и т. д. У некоторых животных глаза могут двигаться и независимо (хамелеон, морской конек). У человека и наземных позвоночных формирование изображения на сетчатке происходит при помощи роговицы и хрусталика. Роговица играет основную роль в преломлении света в глазу. Хрусталик, имеющий у человека и наземных позвоночных форму двояковыпуклой линзы, кривизна которой может изменяться, благодаря работе цилиарного аппарата (см. Цилиарное тело), осуществляет аккомодацию, т. е. приспособление к четкому видению различно удаленных предметов.

Фасеточные глаза

Эволюция органов зрения у насекомых, ракообразных и некоторых других беспозвоночных пошла по другому пути — сформировались фасеточные глаза. Фасеточные глаза представляют собой растровую оптическую систему, в которой в отличие от глаза камерного типа нет единой сетчатки, рецепторы собраны в маленькие (по 4-9) отдельные группы (ретинулы), образуя не вогнутый, а выпуклый слой рецепторов. Кроме рецепторов, ретинула не содержит никаких нервных элементов. Каждая ретинула обслуживается отдельным диоптрическим аппаратом и образует вместе с ним единицу сложного глаза — омматидий.

Фоторецепторная мембрана в фасеточных глазах уложена не складками, а трубочками (так называемые микровиллы, или микроворсинки), и поэтому обладает чувствительностью к поляризованному свету. Понятия аккомодации, близорукости или дальнозоркости не приложимы к фасеточному глазу. У беспозвоночных животных, кроме парных сложных глаз, расположенных на переднем конце туловища, существуют еще простые глазки. Так, глазки, расположенные на хвосте у мечехвоста, способны отличать день от ночи. В ночное время они посылают в мозг сигналы, корректирующие циркадный (суточный) ритм, в результате чего из мозга к сложным глазам поступает сигнал, усиливающий их чувствительность к свету в 1000000 раз. У некоторых рыб, амфибий и рептилий есть еще непарный теменной глаз, который не обладает предметным зрением, а лишь различает свет-тьму и, возможно, направление света. Сетчатка теменного глаза состоит только из рецепторов и ганглиозных клеток. Возможно, его роль состоит в коррекции часов циркадного ритма.

Новейшими генетическими исследованиями показано, что стратегия развития глаз, их положение на переднем конце тела определяется специальными генами, которые гомологичны у позвоночных и беспозвоночных животных.

Глаза водных животных

Глаз водного животного отличается от глаза наземного тем, что роговица, играющая главную роль в преломлении света в глазу у наземных животных, в воде не работает как преломляющая свет среда, и фокусировка изображения на сетчатке происходит только при помощи хрусталика. Однако, если у человека хрусталик может изменять свою кривизну, то у рыб он круглый и плотный, и может подстраивать фокус, только двигаясь относительно сетчатки при помощи специальной мышцы. Глаз рыбы исходно настроен на резкое видение близких предметов и аккомодирует на далекие, отдаляя хрусталик от сетчатки. Так в природе осуществляется два возможных способа фокусировки.

Хотя роговица в воде и не участвует в фокусировке изображения, зато у многих видов рыб она работает как солнечные очки — окрашенная каротиноидными пигментами, она предохраняет сетчатку от слишком яркого света и ультрафиолета. Есть рыбы (восьмилинейный дальневосточный терпуг), у которого эти очки типа «хамелеон» — при ярком солнце роговица окрашена в желто-оранжевый цвет, а к вечеру обесцвечивается. Это происходит благодаря движению пигментов в специальных клетках роговицы.

Есть животные, живущие и на суше, и в воде. Это не только земноводные, но и некоторые рыбы (четырехглазка, илистый прыгунчик), пресмыкающиеся (крокодилы), птицы (пингвины, кайры, гагары) и млекопитающие (тюлени). В каждом случае имеются свои остроумные приспособления в конструкции глаз, позволяющие этим животным одинаково хорошо резко видеть под водой и на суше.

Источники:
  • http://medprevention.ru/glaza/zabolevaniya-organov-zreniya/4233-svetochuvstvitelnye-retseptory-nakhodyashchiesya-v-glazu-palochki-i-kolbochki
  • http://bio-ege.sdamgia.ru/problem?id=10620
  • http://vseokraskah.net/pigmenty/cvet-pigmentov.html
  • http://texts.news/fiziologiya-cheloveka_1558/preobrazovanie-energii-sveta-66490.html
  • http://my-edu.ru/edu_bio/3_19.html