Меню Рубрики

Бионический глаз вернул слепому пациенту зрение

Григорию Ульянову из Челябинска почти 60 лет. 20 лет он прожил в полной темноте. Слепнуть он начал еще в раннем детстве. Григорий не рассказывал об этом даже близким, продолжал учиться, работать и заниматься спортом, но однажды мир для него погас. Параллельно со зрением начал пропадать и слух.

Глухоту почти сразу помогли победить слуховые аппараты, а вот снова видеть Григорий уже и не рассчитывал — врачи сказали, что у него поражена сетчатка, и это безнадежно. Надежда появилась совсем недавно. Григорий узнал, что ученые ищут добровольца для экспериментальной операции, и сразу откликнулся. Прошел обследования в Москве, и оказалось, что именно такого пациента искали для вживления бионического глаза. Это американская разработка, механизм ее действия в том, что изображение с камеры в очках по беспроводной связи передается глазу, где переводится в микротоки и стимулирует клетки сетчатки при помощи 60 крошечных электродов. В мире уже больше 250 пациентов, которым установили такие системы. В России первым стал Григорий.

Елена Будко, дочь Григория Ульянова: «Вы знаете, какой счастливый он был! Когда он надел очки, когда ему все подключили, его первые слова были: „Я увидел свет“. Свет! От восторга у меня аж слезы полились».

В начале декабря московские хирурги провели уже вторую операцию по вживлению бионического глаза. Антонина Захарченко из Челябинска потеряла зрение 13 лет назад. Настроена она позитивно. Говорит, что быть первой в России почетно. Правда, цена импланта вместе с установкой составляет примерно 10 миллионов рублей. В фондах, которые давали деньги на первые операции, рассчитывают, что со временем к финансированию подключится государство, а сама технология подешевеет.

Пациентам требуется время, чтобы научиться пользоваться таким глазом. Мозг должен привыкнуть переводить в зрительные образы непривычные сигналы. Картинка, увы, далека от той, которую видят зрячие люди: она , в основном это световые пятна и очертания предметов. Но пациенты не были слепы от рождения, и, когда они видят очертания, память помогает достроить картинку.

Прогресс не останавливается. Ученые уже тестируют кортикальные импланты — чипы, которые прямо в мозгу принимают картинку с внешних камер, и неважно, в каком состоянии сетчатка глаза. Возможно ли такое? Ответ на этот вопрос — в сюжете программы «Чудо техники».

В России сделали операцию по имплантации бионической сетчатки глаза слепому пациенту

Впервые в России врачи смогли частично вернуть зрение слепому пациенту. Более двух десятилетий житель Челябинска находился в полной темноте. После того, как ему пересадили бионическую сетчатку глаза, он начал реагировать на свет и распознавать очертания предметов. Специалисты говорят, что после курса реабилитации мужчина сможет воспринимать окружающий мир почти так же, как и до болезни.

Первые робкие шаги Григория Александровича без трости для слепых. 25 лет он передвигался только с ее помощью. Из-за генетического заболевания мужчина почти совсем потерял зрение, но никогда не терял надежду.

«Я подал заявку — выбрали меня», — говорит Григорий Ульянов.

Он стал первым и пока единственным пациентом в России, которому удалось вернуть зрение при помощи электронной системы. Ее называют бионический глаз, хотя, конечно, глаз у пациента остался своим. Система состоит из вживленного датчика, выполняющего роль сетчатки, специальных очков и компьютера. Вмонтированная в очках камера получает изображение, оттуда сигнал идет в портативный компьютер, где переводится в электрические импульсы и отправляется на искусственную сетчатку.

«Ток по микрокабелю входит внутрь глаза, куда имплантирован электронный чип, который находится на поверхности сетчатки. Через этот чип происходит раздражение нервных окончаний зрительного нерва», — рассказывает директор Научно-исследовательского центра офтальмологии ФГБОУ ВО РНИМУ им. Н.И.Пирогова Христо Тахчиди.

Операция по имплантации сетчатки длилась более шести часов. Хирурги работали очень аккуратно, использовали даже специальные инструменты, чтобы не повредить миниатюрный имплантат.

«Через разрез в 5 мм этот имплант вводится в полость глаза. Обратите внимание, все пинцеты с силиконовыми наконечниками специальными, потому что, если вы сожмете кабель, то перекусите волокна», — рассказывает директор Научно-исследовательского центра офтальмологии ФГБОУ ВО РНИМУ им. Н.И.Пирогова Христо Тахчиди.

Сегодня — три недели после операции, Григорий Александрович уже различает предметы, но признается, что не может забыть момент, когда к нему вернулось зрение.

Григорий Александрович пока может только различать очертания предметов. Он видит все в черно-белом свете, а силуэты размыты, как на фотографии с низким качеством изображения. Но это уже не слепота. Со временем контуры предметов станут четкими, и пациент без труда будет ориентироваться в пространстве.

За 25 лет мозг пациента просто забыл, как видеть изображения. Но нервные связи постепенно восстанавливаются. Григорий Александрович быстро осваивает новый аппарат и как ребенок радуется своим пока еще маленьким успехам.

«Мы сегодня как раз говорили о лучших результатах, которых удалось добиться уже человечеству. Скажем, один из пациентов, который исходно был мастером спорта по стрельбе из лука, с пятиметрового расстояния попадает в десятку после того, как был совершенно слепым. Это результат прекрасный», — отметила министр здравоохранения РФ Вероника Скворцова.

В мире всего 30 пациентов с подобной электронной сетчаткой. Но опыт российских специалистов — один из самых успешных, восстановление происходит очень быстро. Не последнюю роль здесь играет настрой самого пациента. Григорий Александрович очень старается, потому что хочет опять пройтись по улицам любимого города, который долгое время был погружен для него в темноту.

Бионический глаз вернул слепому пациенту зрение. Что происходит после операции

Британские хирурги провели операцию, о которой человечество еще несколько лет назад могло лишь мечтать или читать в фантастических романах. Офтальмологи вернули зрение двум пациентам. Они вживили в сетчатку так называемый бионический глаз.

Это небольшое устройство напоминает видеокамеру. Объектив расположен на специальных очках, а изображение передается через зрительный нерв прямо в мозг. С точки зрения видящего человека качество картинки пока оставляет желать лучшего. Но для тех, кто потерял зрение — это настоящее спасение.

Корреспондент НТВ Евгений Ксензенко разбирался в тонкостях электронного глаза :

Солнечные очки Линды Мурфут это не защита от света, а возможность увидеть его. Со стороны кажется, что обычная пара идет на прогулку, а на самом деле Линда — одна из первых людей, которых фантасты полвека назад называли киборгами.

Линда Мурфут: «Я могу вместе с внуком забросить мяч в корзину. Я могу увидеть, как танцует моя внучка на сцене. Я могу различать предметы».

Линда видит с помощью бионического глаза. В ее очки встроена маленькая видеокамера. Она фиксирует изображение, а потом преобразует его в электронные сигналы, которые в свою очередь беспроводным путем попадают в чип, вживленный в сетчатку глаза.

Он расшифровывает импульсы и с помощью решетки из электродов передает информацию в мозг через оптический нерв. Это естественный процесс. За исключением результата — качества картинки. Оно зависит от числа электродов.

Можно попытаться представить, что видит Линда, когда надевает очки с видеокамерой. 16 электродов позволяют совсем немного. А вот взгляд с помощью 60 электродов — это что-то. Так сейчас видят в мире всего 15 человек. В будущем — четкое изображение, но в черно-белом варианте. Хотя после таких результатов до цветного мира явно один шаг.

Первый же шаг сделали в американской лаборатории профессора Марка Хамейуна. Он не сомневается, что в будущем вместо 60 светочувствительных электродов можно будет использовать тысячи.

Марк Хамейун, профессор офтальмологии: «Мы называем это искусственным зрением. Оно отличается от того, что мы с вами видим. Мозг должен привыкнуть к нему. Это как наблюдать за развитием ребенка. Сначала он ползает и только потом ходит и бегает».

Даже скептически настроенные ученые подтверждают, что бионический глаз способен заменить настоящий.

Джон Маршалл, профессор офтальмологии: «Я абсолютно поддерживаю эту технологию. Но должен добавить, что она не будет доступна немедленно. Еще много работы нужно сделать, чтобы отладить систему с пользой для зрения».

Российские специалисты считают, что эта технология не может быть массовой. Ведь такая операция стоит дорого — от 30 тысяч долларов.

Христо Тахчиди, генеральный директор межотраслевого научно-технического комплекса «Микрохирургия глаза» им. С. Н. Фeдорова: «Можно сделать какую-то супервещь, которую может один специалист в мире делать. Это никому неинтересно с точки зрения применения. То есть ее нужно упростить, довести до такого уровня, когда это может выполнять человек средних способностей — хирург, врач, биолог».

Британские и американские ученые обещают, что через три года Линде не нужно будет носить очки. В лабораториях разрабатывают видеокамеру размером меньше горошины. С ее помощью можно будет различать даже лица людей. Если опыт пройдет успешно, то солнцезащитные очки можно будет надевать только по назначению.

Бионический глаз по своей сути похож на слуховой аппарат — устройство восстанавливает утраченную функцию организма, в данном случае — зрение. Вживленные электроды стимулируют сетчатку глаза, которая передает изображение на глазной нерв. Сама «картинка» формируется видеокамерами, смонтированными на очках. Изображения, захваченные камерой, передаются в чип, который генерирует импульсы, воспринимаемые мозгом как образы. Один из приборов был разработан в 2005 году профессором Гислин Данейли из университета Джонсона Хопкинса, Балтимор.
*
Профессор офтальмологии Марк Хамейун из Института Глаза в Университете Южной Калифорнии (США) предполагает, что к 2009 году глазной протез можно будет увидеть на потребительском рынке по цене в районе пятнадцати тысяч фунтов стерлингов.
Первая версия разработанного его группой протеза сетчатки глаза уже проходила так называемые «полевые» испытания в 2007 году, в ходе эксперимента Бионическая сетчатка вживлена шести пациентам с потерей зрения в результате заболевания retinitis pigmentosa. Retinitis pigmentosa — неизлечимая болезнь, при которой человек теряет зрение (наблюдается примерно в одном случае на каждые три с половиной тысячи человек). Пациенты, которым был вживлен бионический глаз показали способность не только различать свет и движение, но и определять предметы размером с кружку для чая или даже ножа. К некоторым из них вернулась способность читать крупные буквы.
*
В 2008 году сделано также изобретение исследователей Массачусетского технологического института (Massachusetts Institute of Technology, MIT), которые заявляют, что их разработка уже через несколько лет «сможет вернуть частично потерянное зрение людям, страдающим от дегенеративной глазной болезни.»

Ученым удалось создать биоэлектронный имплантант размером не больше карандашного ластика, который они поместят за сетчатку на заднюю часть глазного яблока — изображение будет передаваться в мозг «через коннекторы не толще людского волоса.» Разработка уже проходит проверку Управления по контролю за продуктами и лекарствами США, и исследователи планируют уже этим летом испытать технологию на животных.
Однако, это изобретение не сможет помочь слепым с рождения или людям, страдающим глаукомой — процедура разрешена только тем, у кого остались неповрежденные клетки зрительного нерва.

БГ высокого разрешения: теория

Создавая внутриглазные электронные имплантаты, большинство авторов совершает ошибку: отказывается от «остатка» зрения, которое ещё есть, и пробует заменить его камерой. Но интересная картина нарисуется, если создать биоэлектронный гибрид.
Дэниел Паланкер (Daniel Palanker) из Стэнфордского университета (Stanford University) и его научная группа «Биомедицинской физики и офтальмологических технологий» (Group of BioMedical Physics and Ophthalmic Technologies) разработали оригинальный протез сетчатки высокого разрешения или «Бионический глаз» (Bionic Eye), обладающий целым рядом преимуществ перед предыдущими проектами лечения слепоты с помощью электронных имплантатов.

Возрастная деградация сетчатки, при которой умирает значительное количество светочувствительных клеток, и такое заболевание, как пигментоз — ответственны за слепоту (или близкое к «нулю» зрение) миллионов людей во всём мире.

Читайте также:  Поступок героя с моральной точки зрения

Множество научных групп и лабораторий экспериментируют с имплантатами сетчатки. Поскольку при указанных дефектах сами нервные клетки (в основном) остаются в порядке, можно направлять в них слабые электрические импульсы с некой схемы — решётки из электродов, размещённой прямо в сетчатке.

Соответственно, импульсы эти должны отражать картинку, которую снимает миниатюрная видеокамера, закреплённая на голове.

Блестящий замысел. Если бы не ряд «но». Во-первых, размещение большого числа электродов на маленькой площади — это препятствие биологического плана. Схема просто перегревает глаз.

Кроме того, даже имплантировав решётку в толщу сетчатки, нельзя добиться слишком близкого соприкосновения электродов и её глубинных клеток, лежащих непосредственно под умершими фоторецепторами.

И получается, что как только инженеры сближают электроды между собой (то есть увеличивают разрешение микросхемы), каждый из них начинает действовать сразу на ряд ближайших клеток — а должен, в идеале, — только на одну, иначе смысл в высоком разрешении изображения телекамеры полностью пропадает.

Разрез под микроскопом: клетки сетчатки крысы мигрируют через крошечное отверстие имплантата (фото с сайта stanford.edu).

Чтобы это препятствие обойти, нужно «привязать» по одному электроду на одну, от силы — две клетки. Но для плотности пикселей, геометрически соответствующей остроте зрения 20/400 (это почти невидящий человек, порог «юридической слепоты», как пишут авторы работы, а в наших единицах — это зрение 0,05) клетки должны располагаться не дальше 30 микрон от электродов.

А для остроты 20/80 (0,25) это расстояние не должно превышать 7 микронов. При такой остроте зрения, кстати, уже можно пользоваться компьютером, передвигаться по городу, распознавать лица и вообще — вести самостоятельную жизнь.

Нажимать же на имплантат при внедрении (чтобы плотнее прижать электроды к слою клеток) нельзя — велик риск травмы сетчатки.

А ведь расстояние между каждым из электродов и его «подшефной» клеткой — далеко не всё. Для такой остроты зрения (20/80) нужно иметь плотность пикселей в 2,5 тысячи на квадратный миллиметр.

Потому никому до сих пор не удавалось создать устройство с числом электродов (читай — транслируемых пикселей) больше нескольких штук, десятков, ну, может быть — сотни. А нужно их иметь — многие тысячи.

Тут сделаем ещё один мини-экскурс в биологию. Глаз имеет примерно 100 миллионов фоторецепторов (это как камера на 100 мегапикселей). Однако в составе зрительного нерва в мозг идёт всего 1 миллион раздельных каналов. Информация пропадает?

Нет, оказывается, в самой сетчатке уже происходит предварительная обработка, некое суммирование информации. Сама сетчатка — это ведь не только слой фоторецепторов, но слой нервной сети.

Теперь, если возвращаться к имплантатам с электродами, необходимо сказать — есть несколько подходов к размещению такого имплантата в глазу. Он может занимать различные слои по глубине.

Можно обойтись меньшим числом электродов (только тогда необходимо имитировать суммированные сигналы нервной сети сетчатки), а если возбуждать нервные клетки, лежащие ближе к фоторецепторам — можно хорошо воспроизводить систему зрения, только плотность пикселей в имплантате должна быть высокой.

Чтобы разрешить это противоречие, авторы нового проекта провели ряд опытов на крысах. И обнаружили новый биологический эффект. Учёные внедряли в сетчатки животных полимерные пластинки с маленькими отверстиями — диаметром 15-40 микрон.

И вот через считанные часы клетки сетчатки сами начали передвигаться в отверстия, в течение всего нескольких дней заполняя полости под ними. Аналогично клетки вели себя и по отношению к пластине, которую покрывали стройные ряды длинных выступов-башенок. Клетки быстро заполняли промежутки между этими выступами.

В новом проекте клетки сетчатки заманиваются в полости имплантата. На его поверхности и в отверстиях создаётся система стимулирующих электродов (иллюстрация с сайта stanford.edu).

«Если гора не идёт к Магомету, то Магомет идёт к горе, — сказал Паланкер. — Мы не можем поместить электроды близко к клеткам. Но мы фактически приглашаем клетки прибыть в область электродов, и они делают это с удовольствием и очень быстро».

Таким образом, в проекте нового имплантата удалось добиться той самой плотности 2,5 тысячи электродов на квадратный миллиметр с соблюдением дистанции между каждым электродом и его личной клеткой — до 7 микрон. Электроды разместили в этих полостях и, соответственно — на выступах.

Будет ли рабочий проект иметь отверстия в пластине или наоборот — «башенки» — пока неясно. В случае отверстий можно добиться едва ли не поштучного соединения электродов и клеток, но зато в случае выступов — у клеток лучше снабжение питательными веществами. Выбор будет сделан позже.

Но это — далеко не все отличия проекта от конкурирующих работ. Если помните, другие авторы предлагали транслировать на электроды сигнал прямо с камеры на лбу. А в этом есть сильный подвох.

Аналогично работает схема с выступами (иллюстрация с сайта stanford.edu)

Дело в мельчайших непроизвольных движениях глаз, сканирующих пространство даже тогда, когда нам кажется, что мы неподвижно смотрим в одну точку.

Если напрямую связывать камеру на лбу с имплантатом в сетчатке, это свойство зрения пропадает, что очень негативно сказывается на восприятии. А ещё — при такой схеме — зрение полностью зависит от числа электродов в имплантате. А что можно увидеть, скажем, в ста пикселях?

Паланкер предложил иную схему. Камера на лбу тут также имеется, но она направляет сигнал в носимый микрокомпьютер (размером с бумажник), который переводит видимое изображение в набор коротких импульсов инфракрасного светодиодно-жидкокристаллического дисплея, с числом точек в несколько тысяч.

Этот поток импульсов отражается от наклонного стекла, расположенного перед глазами, проходит через хрусталик и попадает на фоточувствительные диоды имплантата в сетчатке глаза. Те усиливают сигнал, используя энергию от крошечной солнечной батареи, имплантированной в радужку.

Эти инфракрасные лучи человек не видит. А вот результат воздействия электрических импульсов на клетки сетчатки — воспринимает как изображение.

При этом сам имплантат имеет размер в половину рисового зерна (3 миллиметра) и покрывает 10 градусов поля зрения — его центр.

Бионический глаз Паланкера (иллюстрация с сайта stanford.edu).

И тут главный фокус: благодаря стеклу у человека сохраняется естественное восприятие сцены перед ним (теми живыми фоторецепторами, что ещё работают в глазу), особенно — периферийным зрением, наряду с наложенным «дополнением» от камеры.

И мелкие быстрые движения глаз сохраняют свою важность — ведь человек сам смотрит как на пейзаж (напрямую), так и на то электронное изображение (пусть инфракрасное).

Положение этого изображения на сетчатке (и внедрённой решётке электродов, соответственно) меняется вместе с движением глазного яблока. Таким образом, электронный прибор максимально использует оставшиеся естественные способности глаза по обработке зрительной информации.

Бионический глаз — что это? Именно такой вопрос возникает у людей, которые впервые столкнулись с этим термином. В приведенной статье мы подробно на него ответим. Итак, приступим.

Определение

Бионический глаз — это устройство, позволяющее слепым различать ряд визуальных объектов и компенсировать в определённом объёме отсутствие зрения. Хирурги имплантируют его в повреждённый глаз в качестве протеза сетчатки. Тем самым они дополняют искусственными фоторецепторами сохранившиеся в сетчатке неповреждённые нейроны.

Принцип действия

Бионический глаз состоит из полимерной матрицы, снабжённой фотодиодами. Она фиксирует даже слабые электрические импульсы и транслирует их нервным клеткам. То есть сигналы преобразуются в электрическую форму и воздействуют на нейроны, которые сохранились в сетчатке. У полимерной матрицы есть альтернативы: инфракрасный датчик, видеокамера, особые очки. Перечисленные устройства могут восстановить функцию периферийного и центрального зрения.

Встроенная в очки видеокамера записывает картинку и отправляет её в процессор-конвертор. А тот, в свою очередь, преобразует сигнал и отсылает его ресиверу и фотосенсору, который вживлён в сетчатку глаза больного. И только потом электрические импульсы передаются в мозг пациента через оптический нерв.

Специфика восприятия изображения

За годы исследований бионический глаз претерпел множество изменений и доработок. В ранних моделях картинка передавалась с видеокамеры сразу в глаз пациента. Сигнал фиксировался на матрице фотодатчика и поступал по нервным клеткам в мозг. Но в этом процессе был один недостаток — разность в восприятии изображения камерой и глазным яблоком. То есть они работали не синхронно.

Другой подход состоял в следующем: вначале видеоинформация отправлялась в компьютер, который преобразовывал видимое изображение в инфракрасные импульсы. Они отражались от стёкол очков и попадали через хрусталик в глазную сетчатку на фотосенсоры. Естественно, пациент не может видеть ИК-лучи. Но их воздействие аналогично процессу получения изображения. Иными словами, перед человеком с бионическими глазами формируется доступное для восприятия пространство. А происходит это так: картинка, полученная от действующих фоторецепторов глаза, накладывается на изображение от камеры и проецируется на сетчатку.

Новые стандарты

С каждым годом биомедицинские технологии развиваются семимильными шагами. В данный момент собираются внедрять новый стандарт для системы искусственного зрения. Это матрица, каждая сторона которой будет содержать по 500 фотоэлементов (9 лет назад их было всего 16). Хотя, если провести аналогию с человеческим глазом, содержащим 120 млн палочек и 7 млн колбочек, то становится понятен потенциал дальнейшего роста. Стоит отметить, что информация передаётся в головной мозг через миллионы нервных окончаний, а потом их уже самостоятельно обрабатывает сетчатка.

Этот бионический глаз был разработан и сделан в США компанией «Ясновидение». 130 пациентов с заболеванием пигментный ретинит воспользовались его возможностями. Argus II состоит из двух частей: встроенной в очки мини-видеокамеры и имплантата. Все объекты окружающего мира фиксируются на камеру и передаются в имплантат через процессор по беспроводной связи. Ну а имплантат с помощью электродов активирует имеющиеся у больного клетки сетчатки, отправляя информацию прямиком в зрительный нерв.

Пользователи бионического глаза уже через неделю чётко различают горизонтальные и вертикальные линии. В дальнейшем качество зрения через это устройство только возрастает. Argus II стоит 150 тысяч фунтов стерлингов. Однако исследования не прекращаются, так как разработчики получают различные денежные гранты. Естественно, искусственные глаза ещё довольно несовершенны. Но учёные делают всё, чтобы качество передаваемой картинки улучшилось.

Бионический глаз в России

Первым пациентом, которому в нашей стране вживили устройство, стал 59-летний челябинец Александр Ульянов. Операция шла на протяжении 6 часов в Научно-клиническом центре оториноларингологии ФМБА. За периодом реабилитации пациента следили лучшие офтальмологи страны. На протяжении этого времени в установленный Ульянову чип регулярно пускали электрические импульсы и отслеживали реакцию. Александр показывал отличные результаты.

Конечно, он не различает цветов и не воспринимает многочисленные объекты, доступные здоровому глазу. Окружающий мир Ульянов видит размыто и в чёрно-белом цвете. Но и этого ему достаточно для абсолютного счастья. Ведь последние 20 лет мужчина вообще был слепым. А сейчас его жизнь полностью изменил установленный бионический глаз. Стоимость операции в России составляет 150 тыс. рублей. Ну и плюс цена самого глаза, которая была указана выше. Пока устройство выпускают только в Америке, но со временем в России должны появиться аналоги.

Григорий Александрович Ульянов в такой темноте прожил 20 лет. Прежде чем благодаря операции по пересадке бионического глаза он снова увидел свет.

В каком-то смысле наш глаз — это камера, которая с помощью нервных окончаний передает картинку в «процессор» — головной мозг, а тот расшифровывает полученные сигналы. Эта трансляция происходит благодаря сетчатке — своеобразной параболической антенне, которая дает охват зрения на 180 градусов. Если в ней происходит какое-то нарушение, наступает слепота.

Еще в 2005 году Даниел Паланкер из Стэнфордского университета с научной группой сконструировал оптический прибор, аналогичный человеческому глазу — так называемый бионический глаз.

Читайте также:  Аппарат для зрения с воздушным шаром

В 2011 году американские ученые разработали бионический глаз Argus II — к слову, создала его та же компания, что производит и импланты для слабослышащих.

Предыстория

В конце июня первую операцию по пересадке бионического глаза в НИЦ офтальмологии РНИМУ им. Н.И. Пирогова на базе ФНКЦ оториноларингологии ФМБА России. А первым пациентом стал Григорий Александрович Ульянов из Челябинска.

Пигментная болезнь, при которой зрение стремительно падает, а 180-градусное поле зрения постепенно сужается до размеров туннеля, все более и более узкого. Потом его стенки смыкаются, и наступает темнота.

Этот диагноз поставили Григорию Александровичу. Терять зрение он начал еще в молодости. Сначала у него появилась куриная слепота — в сумерках при плохом освещении он с трудом различал предметы, но тщательно скрывал это. Он тогда учился еще в училище и боялся, что проблемы со зрением помешают ему продолжать учиться и работать.

Зрение по-прежнему падало — точнее постепенно сужалось поле видимости. В конце концов остался видимым лишь узкий луч света.

Я понимал, что скоро исчезнет и этот луч, и стал готовиться к погружению в темноту.

Он смотрит прямо на меня, хотя на самом деле в бионических очках видит лишь сплошное белое пятно. Но до операции не было и этой белизны — его окружала кромешная темнота.

По его словам, тогда, 20 лет назад, поняв, что слепота неизбежна, он старался запомнить окружающий мир. И не в смысле «наглядеться», запечатлеть в памяти лица родных и друзей, хотя, конечно, и это тоже. В первую очередь — по практическим соображениям. Он пытался запомнить до мельчайших подробностей маршрут, которым ходил на работу, свою квартиру, чтобы потом в темноте с легкостью передвигаться по ней.

Запоминал, где что лежит и стоит. Пробовал ходить с закрытыми глазами, чтобы, пока еще есть возможность, увидеть, где он может споткнуться.
Он еще успел поглядеть на недавно родившуюся внучку Иришку. Это было в 1997 году. А потом все.

Когда ему предложили сделать операцию, он сначала отказался. И страшно было, и казалось ненужным. К этому времени Григорий Александрович вполне освоился в своей слепоте. Через весь город ездил на работу — на металлургический завод. Ходил в магазин, занимался какими-то элементарными домашними делами. Внуки знали, что дедушка не видит, и научились описывать словами то, что происходит вокруг.

Григорию Александровичу объяснили, что даже после операции привычного зрения не появится. Но он сможет , а это позволит лучше ориентироваться в пространстве.

Все же после долгих раздумий он все же решился.

В молодости мужчина увлекался фокусами. Понятно, что слепота поставила крест на увлечении. Но когда встал вопрос об операции, он подумал: если он сможет различать свет от предметов, он сможет вернуться к своему хобби.

Что было на операции

«Операция очень трудоемкая, — говорит Христо Тахчиди. — Это очень сложная конструкция, которую надо было собрать не только на глазу, но и внутри него, в микронном исполнении».

Конструкция бионического глаза состоит из двух блоков. Внешний крепится на специальной оправе: это микрокамера на переносице и антенна со стороны прооперированного глаза. С антенны вся информация передается на микропреобразователь, который крепится на глазном яблоке. От микропреобразователя тянется своеобразный микрокабель, который заканчивается микрочипом. Этот электронный чип состоит из 60 электродов и устанавливается на центральной зоне сетчатки. Сигнал, который поступает в преобразователь на глазу, трансформируется в микроэлектрический ток, стимулирующий сетчатку. Стимуляция сетчатки вызывает нервный импульс, который по зрительным путям идет в кору головного мозга. Именно здесь и рождается изображение, как у обычного человека.

Работа деликатная и требует невероятной тонкости. Чтобы микропроводки случайно не перекусить, на все инструменты надевались силиконовые трубочки. Каждая манипуляция была предварительно точно выверена, поскольку лишние движения были нежелательны. И главное — каждое движение надо было делать верно с первого раза.

Операция длилась шесть часов. Но, чтобы начал «видеть» бионический глаз, эту систему нужно включить. И делает это уже даже не хирург, а специальная инженерная группа.

Григорию Александровичу подключили систему через две недели после операции, когда постепенно зажили все разрезы.

Я сперва ничего не понял, — делится впечатлениями от первых минут после включения системы. — Перед глазами вдруг все засверкало, какие-то белые пятна. И постоянно вспышки, вспышки. После полной темноты было непривычно и даже тяжело.

Белыми пятнами были врачи, которые собрались вокруг. То, что операция прошла нормально и пациент чувствует себя хорошо, было ясно. Но увидит ли он свет — главный вопрос.

Что происходит после операции

«У него не будет зрения, привычного для нас, — объясняет Христо Тахчиди. — Это новое зрение будет как у более примитивных живых существ. Оно дает не детализированную информацию, а световые пятна различной формы. Мы как бы эволюционируем назад, возвращаемся к низшим организмам. Это своего рода система зрительных шифров, которые надо разгадать. Этому и будем обучать пациента.

В реальности это выглядит примерно так. Человеку показывают на предмет и спрашивают, что он видит на этом месте. А видит он световые пятна. И он должен запомнить, что вот такого рода световая конфигурация- это тарелка. И так далее. Это как новый язык, который просто надо выучить. Только вместо грамматики — геометрия световых пятен.
Эти программы отработаны на международном уровне, есть специально для дома, есть — для ориентирования на улице.

По словам Христо Тахчиди, Григорий Александрович учится быстро: «Со второго раза он сумел „увидеть“ шарик и взять его в руки. Хотя обычно это умение приходит лишь спустя месяцы после обучения. Но он вообще хорошо адаптирован к жизни. У него было абсолютно правильное, рациональное вхождение в инвалидность. И сейчас операции он не потерял имеющихся знаний. Мир остался с ним. И он пытается использовать новые знания».

Конечно, бионический глаз не равноценная замена живому. И не только потому, что он не определяет деталей предмета. Есть нюансы, о которых здоровый человек даже не думает. Например, на звук или источник света мы реагируем движением глазных яблок. Поворачиваться самим не обязательно.
А с бионическим глазом чтобы, скажем, посмотреть вниз, одного движения глаз недостаточно. Придется наклонить голову. И вот к этому тоже предстоит еще привыкнуть.

«Такой подарок отец сделал себе на день рождения, — рассказывает его дочь Елена, которая приехала с отцом в Москву. — На следующий день после операции ему исполнилось 59 лет».

Дочь связывает Григория Александровича с родным домом в Челябинске, с семьей, близкими.

«Скучаю, — застенчиво улыбаясь признается он. — Очень по жене соскучился. И вообще домой хочется. Я хорошо себя чувствую. Надеюсь, скоро поедем».

У него есть уже некоторые планы. Наверное тем, у кого нет проблем со зрением, они покажутся незатейливыми, но они невероятны по своим возможностям для человека, который не видел.

Григорий Александрович рассчитывает, что теперь сможет сыграть в шашки. Сможет участвовать в заводских концертах и показывать . «Увидит» пусть и световыми пятнами всю свою большую семью — жену, детей, внуков и новорожденную правнучку.

Что было самое для вас самым трудным? — спрашиваю я напоследок, ожидая услышать о бытовых проблемах.
— Я привык ориентироваться наощупь. А самое трудное — это отсутствие зрения, — вздыхает он. — Я до сих пор помню и лица близких, и свою улицу. Но не вижу их. А так хочется видеть.

Бионический глаз (_en. Bionic Eye) — протез сетчатки глаза высокого разрешения, разработанный Дэниелом Паланкером (_en. Daniel Palanker), сотрудником Стэнфордского университета (Stanford University) и его научной группой «Биомедицинской физики и офтальмологических технологий» (Group of BioMedical Physics and Ophthalmic Technologies).

Они разработали протез сетчатки глаза высокого разрешения или «Бионический глаз» (Bionic Eye) [ ] , обладающий целым рядом преимуществ перед предыдущими проектами лечения слепоты с помощью электронных имплантантов.

В Японии также создана искусственная сетчатка глаза на основе патента США, которая в перспективе поможет вернуть зрение ослепшим пациентам. Как стало известно, технология разработана специалистами корпорации «Сэйко-Эпсон» и базирующегося в Киото Университета Рюкоку. [http://www.medlinks.ru/article.php?s >

Искусственная сетчатка представляет собой фотосенсор, содержащий тончайшую алюминиевую матрицу с полупроводниковыми элементами из кремния . Для лучшего проведения базовых испытаний, она размещена на прямоугольной стеклянной табличке размером 1 см. Для последующих испытаний на животных, в частности, морских угрях, ее предполагается установить на гибких жидкокристаллических панелях.

По принципу действия искусственная сетчатка иммитирует настоящую: при попадании лучей света в полупроводниках образуется электрическое напряжение, которое в качестве зрительного сигнала должно передаваться в мозг и восприниматься в виде изображения.

Разрешение светочувствительной матрицы в составляет 100 пикселей, но после уменьшения размеров чипа, оно может быть увеличено до двух тысяч графических элементов. По утверждению специалистов, если такой чип имплантировать полностью незрячему человеку, он сможет с близкого расстояния различать крупные предметы — такие, например, как дверь или стол.

Из заявления американских ученых к 2009 году глазной протез можно будет увидеть на потребительском рынке. Об этом сообщил профессор офтальмологии Марк Хамейун из Института Глаза в Университете Южной Калифорнии (США). [http://www.membrana.ru/print.html?1132336800 ]

Первая версия протеза сетчатки глаза уже проходит так называемые «полевые» испытания. Бионическая сетчатка вживлена шести пациентам с потерей зрения в результате заболевания retinitis pigmentosa. Retinitis pigmentosa — неизлечимая болезнь, при которой человек теряет зрение. Наблюдается примерно в одном случае на каждые три с половиной тысячи человек.

Пациенты, которым был вживлен бионический глаз, показали способность не только различать свет и движение, но и определять предметы размером с кружку для чая или даже ножа. К некоторым из них вернулась способность читать крупные буквы.

Устройство для испытаний усовершенствовано. Вместо шестнадцати светочувствительных электродов в него вмонтировано шестьдесят.

В настоящее время в США уже разработан и испытывается на животных протез сетчатки глаза с более 2,5 тыс. пикселей. [http://www.membrana.ru/print.html?1132336800 ]

ей более 2,5 тыс. и расстоянием между ними в 7 мкм. Это позволило в десятки раз повысить разрешающую способность сетчатки глаза. Старый протез на базе сплошной конструкции с выступающими катодами в количестве не более 100 штук не позволял увеличивать количество фотодиодов (пикселей) из-за нагрева, что не желательно для нервных окончаний сетчатки глаза. [http://www.membrana.ru/articles/health/2005/04/07/205000.html ]

Дырчатая конструкция после имплантации позволила нервным клеткам сетчатки автоматически перетекать с верхней и нижней поверхносей фотодатчика через полости и соединяться, а также уменьшить нагрев пикселей и увеличить их количество. [http://www.membrana.ru/print.html?1132336800 ]

* Оптические системы
* Оптические биоинженерные технологии
* Датчик
* Фотосенсор

Wikimedia Foundation . 2010 .

Смотреть что такое «Бионический глаз» в других словарях:

У этого термина существуют и другие значения, см. Слепота (значения). Слепота … Википедия

Технологии создания оптических систем с использованием имеющихся в природе принципов биологических оптических систем.В ходе эволюции природой создано не менее 10 систем зрения, которые образованы в зависимости от условий обитания живых существ.… … Википедия

— (имплантаты) класс изделий медицинского назначения, используемые для вживления в организм либо в роли протезов (заменителей отсутствующих органов человека), либо в качестве идентификатора (например, чип с информацией о домашнем животном,… … Википедия

Импланты (имплантаты) класс изделий медицинского назначения, используемые для вживления в организм либо в роли протезов (заменителей отсутствующих органов человека), либо в качестве идентификатора (например, чип с информацией о домашнем животном … Википедия

Импланты (имплантаты) класс изделий медицинского назначения, используемые для вживления в организм либо в роли протезов (заменителей отсутствующих органов человека), либо в качестве идентификатора (например, чип с информацией о домашнем животном … Википедия

Читайте также:  Как видят дети с остаточным зрением

Bionic Woman Жанр драма … Википедия

› Бионический глаз — уже не фантастика

Искусственное зрение

Бионический глаз — специальное устройство, позволяющее слепым людям различать визуальные объекты и этим компенсировать отсутствие зрения. Принцип работы бионического глаза построен на имплантации протеза сетчатки в поврежденный глаз. Сохранившиеся в сетчатке неповрежденные нейроны дополняются искусственными фоторецепторами.

Слепота может наступить по многим причинам. У людей преклонного возраста может развиться деградация сетчатки глаза с атрофией рецепторов. Если палочки и колбочки перестают реагируют на свет, пациент уже не видит. Однако нервные клетки сетчатке глаза сохраняют работоспособность. Это дает шансы восстановления зрения.

Скотома (в переводе с греческого «темнота») — частая причина потери зрения. Это пятно, возникшее вследствие глаукомы или поражения зрительного нерва, локализованное в поле зрения глаза. Скотомы ослабляют или нарушают зрение.

Как действует бионический глаз

Важная часть бионического глаза — полимерная матрица с фотодиодами. Она фиксирует слабые электрические импульсы и транслирует их нервным клеткам. Сигналы, преобразованные в электрическую форму, воздействуют на сохранившиеся в сетчатке нейроны. Альтернативой полимерной матрице могут быть особые очки, видеокамера, инфракрасный датчик. Они способны восстановить функцию центрального и периферийного зрения.

Видеокамера, встроенная в очки записывает картинку в аналоговой форме. Данные передаются процессору, преобразующему сигнал и отсылающего его ресиверу и фотосенсору, вживленному в сетчатую оболочку глаза пациента. Электрические импульсы передаются через оптический нерв в мозг человека.

Особенности восприятия визуального изображения

Конструктивные особенности бионического глаза постоянно совершенствовались. В ранних моделях картинка передавалась с видеокамеры в глаз пациента. Сигнал фиксировался фотодатчиком и с матрицы площадью в сто пикселов поступал по нервным клеткам в мозг. Однако глазное яблоко и камера работали несинхроно.

В другом варианте видеоинформация поступала в портативный компьютер, преобразующий видимое изображение в массив из нескольких тысяч инфракрасных импульсов. Они, отражаясь от стекла очков, попадали в хрусталик глаза и падали на фотосенсоры в глазной сетчатке. Хотя человек не различает ИК-лучи, их воздействие идентично получению самого изображения. Возможно формирование и восприятие пространства, находящегося перед пациентом с бионическими глазами, благодаря сложению картинки от фоторецепторов глаза и наложения картинки от камеры на центральную область глаза.

Из истории использования бионического глаза

Линда Морфут из Калифорнии перенесла пигментный ретинит в возрасте 21 год. Через 29 лет женщина почти ослепла, лишь левый глаз немного реагировал на свет. Это был 2004 год. Врачи предложили Линде испытать бионический глаз с материцей из 16 электродов. После установки датчика Линда стала различать контуры объектов. Она распознавала здания, сооружения, городскую инфраструктуру, людей и освещение города.

Позже бионический глаз имплантировался после потери зрения пациентам в возрасте 50+. Питеру Лейну в глаз вживили контроллеры, передающие мозгу сигналы от особых очков. Лейн и еще 32 добровольца потеряли зрение в результате дистрофии сетчатки еще в юности. Лейн стал различать контуры предметов в комнате и распознавать графические символы. На момент операции Лейну исполнился 51 год. Другие операции также оказались удачными.

10 лет исследователи были оптимистичны по поводу бионического глаза. Предполагалось, что к 2009 году бионический глаз с матрицей 2,5-ой тысяч пикселей будет продаваться по 15 000 фунтов, однако прогноз не сбылся.

Сегодняшний этап развития технологии бионического глаза

Каждый год мощности биомедицинских технологий возрастают. Сегодня стандартом системы искусственного зрения собираются принять матрицу со сторонами по 500 фотоэлементов. В сравнении с первой матрицей 16х16 разница поразительна. Однако обычный человеческий глаз имеет 7 миллионов колбочек и еще 120 миллионов палочек. Матрицам еще есть, куда двигаться.

Систему бионического глаза Argus II разработала и создала фирма Second Sight (США). Ее испытали 130 пациентов с пигментным ретинитом. Argus II состоит из имплантата сетчатки и мини-видеокамеры, встроенной в очки. Камера фиксирует изображение и передает информацию процессору. Данные получает по беспроводной связи имплантат. Он стимулирует сохранившиеся клетки сетчатки электродами и отправляет информацию зрительному нерву.

Пользователи Argus II различают вертикальные и горизонтальные линии через неделю применения системы. Сегодня стоимость бионического глаза Argus II — 150 000 фунтов стерлингов. Разработчики не останавливают работу, балансируя за счёт различных грантов. Конечно даже совершенные модели искусственного глаза еще слабы, но это важные вехи борьбы со слепотой.

Новости Общество

Бионический глаз вернул слепому пациенту зрение

Московские хирурги впервые в России провели уникальную операцию — вживление бионического глаза. Их пациентом стал 59-летний житель Челябинска. Протез, который установили врачи, американского производства, однако со временем должны и появиться и российские аналоги. Как современные технологии позволяют человеку в буквальном смысле стать киборгом?

Он не различает цветов, не может разглядеть многочисленные детали, доступные глазу здорового человека. Александр Ульянов из Челябинска видит мир размыто и исключительно черно-белым, но и это для него счастье: последние двадцать лет он был полностью слеп. Сложнейшая шестичасовая операция по установке ретинальных имплантов осуществлялась на базе Научно-клинического центра оториноларингологии ФМБА. Александр Ульянов — особенный пациент, первый подобный в России и 41-й в мире, кому был установлен бионический глаз.

За послеоперационным периодом пристально следят не только лучшие офтальмологи, но и лично министр здравоохранения России. Бионическое направление Вероника Скворцова называет одним из самых перспективных в отечественной медицине. Электрические импульсы в установленный Григорию Ульянову чип стали пускать лишь неделю назад, но пациент уже показывает отличные результаты. Теперь самое главное – реабилитация.

«Здесь есть два момента. Мозг как мощнейший биологический компьютер имеет, во-первых, воспоминания исходного видения. У Григория Александровича, нашего первого пациента, ему сейчас 59 лет, зрение ушло около 20 лет назад. Ему уже было более 35 лет, зрительные образы в мозге хранятся, и есть возможность с помощью специальных реабилитационных технологий повышения пластичности мозга соединить получаемую сейчас информацию так, как она получается, с теми зрительными образами, которые хранятся в корковых полях «, — поясняет Вероника Скворцова.

Имплант «Аргус 2» – второе поколение подобных устройств. Первые давали четкость изображения в два раза меньше. Опыт по вживлению и наблюдению в послеоперационном периоде крайне важен для российской медицины. В скором времени российское здравоохранение сможет предложить отечественные аналоги зарубежным разработкам.

«Феноменальный результат. За последние два года очень много у нас появилось собственных медицинских приборов из разных полей — медицины, биомедицины, — которые столь же эффективны, как наши ракеты, коллайдеры, которые работают в Германии на наших компонентах. И мы ожидаем прорыва в ближайшие годы», — продолжила Вероника Скворцова.

Теперь первостепенная задача российских медиков — усовершенствовать процесс реабилитации подобных пациентов. А в долгосрочных планах – создание профильных центров, оказывающих весь спектр высокотехнологичной помощи слепоглухим людям, в том числе, бесплатные операции по бионическому протезированию. Вторая в России операция по вживлению бионического глаза состоится уже этой осенью.

Чипы вместо глаз. Наши учёные вернули зрение слепому слесарю

В России провели первую операцию по пересадке «искусственного глаза». Ослепший 20 лет назад мужчина вновь смог увидеть мир. Пока чёрно-белый.

Возвращение из тьмы

Сразу поясним: речь не идёт о полной копии органа зрения, которым заменяют невидящий глаз. В отличие, скажем, от протеза руки или ноги, который внешне точно воспроизводит утраченную часть тела. «Искусственный глаз» — это конструкция из очков, миникамеры, преобразователя видеосигнала, который крепится на поясе, и чипа, вживляемого в сетчатку глаза. Такие решения, сочетающие живое и неживое, биологию и технику, в науке получили название бионических.

Первым в России обладателем бионического глаза стал 59-летний слесарь-фрезеровщик Григорий Ульянов из Челябинска.

«Наш пациент — 41-й в мире, которому сделана подобная операция, — объяснила «АиФ» министр здравоохранения Вероника Скворцова. — До 35 лет он видел. Потом зрение начало сужаться от периферии к центру и полностью погасло к 39 годам. Так вот эта интересная технология позволяет человеку вернуться из тьмы. На сетчатку ставится чип, который создаёт цифровой образ изображения за счёт трансформации изображения, фиксируемого видео­камерой очков, через специальный преобразователь. Этот цифровой образ передаётся через сохранённый зрительный нерв в кору голов­ного мозга. Самое важное — что мозг распознаёт эти сигналы. Конечно, зрение восстанавливается не на 100%. Поскольку в процессоре, вживляемом в сетчатку, всего 60 электродов (что-то вроде пикселей в экранах, для сравнения: современные смартфоны имеют разрешение от 500 до 2000 пикселей. — Ред.), то изображение возникает более примитивное. Оно чёрно-белое и состоит из геометрических форм. Скажем, дверь такой пациент видит чёрной буквой «П». Тем не менее это намного лучше, чем позволяла видеть первая версия прибора с 30 электродами.

Конечно, пациенту требуется длительная реабилитация. Его нужно учить понимать зрительные образы. Григорий настроен очень оптимистично. Как только подключили анализатор, он сразу же увидел световые пятна и начал считать число лампочек на потолке. Мы очень надеемся, что его мозг сохранил старые зрительные образы, ведь пациент лишился зрения уже в зрелом возрасте. Воздействуя на мозг специальными реабилитационными программами, можно заставить его «соединить» те символы, которые он сейчас получает, с образами, которые хранятся в памяти с тех пор, когда человек видел».

Прозреют все?

В нашей стране это первый подобный опыт. Операцию провёл директор научно-исследовательского центра офтальмологии РНИМУ им. Пирогова хирург-офтальмолог Христо Тахчиди. «Пациент сейчас дома, чувствует себя хорошо, впервые увидел внучку, — говорит профессор Х. Тахчиди. — Обучение у него идёт форсированными темпами. Ребята-инженеры из США, которые приехали подключать электронику спустя пару недель после операции, удивились, как быстро он освоил работу системы. Это удивительный человек, настроенный на победу. И его оптимизм передаётся врачам. Есть несколько программ обучения. Сейчас он учится обслуживать себя в быту — приготовить еду, убрать за собой. Следующий шаг — освоить самые необходимые маршруты: до магазина, аптеки. Дальше — научиться чётко видеть границы объектов, например пешеходной дорожки. Появление более качественной техники, а значит, и более качественного восстановления зрения, не за горами. Вспомните, какими были мобильные телефоны 10-15 лет назад и каковы они сейчас. Главное — пациент социально реабилитируется. Может обслуживать себя».

Правда, гордиться мы пока можем только виртуозным исполнением. Вся технология, равно как и конструкция, — импортные. Недешёвые. Только прибор стоит 160 тыс. долл. А вся технология целиком — 1,5 млн долл. Однако есть надежда, что скоро появятся отечественные приборы.

«Мы начали разработку ретинального имплантата совместно с Первым Санкт-Петербургским государственным медицинским университетом им. Павлова. Конечно, он будет дешевле и доступнее для пациентов, чем импортные», — обнадёжил «АиФ» главный офтальмолог Минздрава, директор НИИ глазных болезней им. Гельм­гольца Владимир Нероев.

Пока же бионическое направление в России активно развивается в других областях. В частности, при создании бионических протезов рук и ног. Ещё одно применение бионики — приборы для восстановления слуха. «Первая кохлеарная имплантация была сделана в России 10 лет назад, — говорит Вероника Скворцова. — Сейчас мы их делаем более тысячи в год и вошли в тройку лидеров в мире. Все новорождённые дети проходят аудиологический скрининг. Если есть определённые необратимые нарушения слуха, без очереди выполняется имплантация. Малыши развиваются, как и слышащие, учатся нормально говорить и не отстают в развитии».

Источники:
  • http://www.1tv.ru/n/329263
  • http://kia-abakan.ru/blood-tests/bionicheskii-glaz-vernul-slepomu-pacientu-zrenie-chto-proishodit-posle/
  • http://www.vesti.ru/doc.html?id=2912688
  • http://www.aif.ru/society/science/chipy_vmesto_glaz_nashi_uchyonye_vernuli_zrenie_slepomu_slesaryu