Меню Рубрики

Биометрическая система защиты радужной оболочке глаза

Современная наука не стоит на месте. Все чаще и чаще требуется качественная защита для устройств, чтобы тот, кто случайно ими завладел, не смог в полной мере воспользоваться информацией. Кроме этого, методы охраны информации от несанкционированного доступа используются не только в повседневной жизни.

Кроме ввода паролей в цифровом виде, применяются и более индивидуализированные биометрические системы защиты.

Ранее такая система применялась только в ограниченных случаях, для защиты наиболее важных стратегических объектов.

Затем, после 11 сентября 2011 года, пришли к выводу, что такой способ защиты информации и доступа может быть применен не только в этих областях, но и в других сферах.

Таким образом, приемы идентификации человека стали незаменимыми в ряду методов борьбы с мошенничеством и терроризмом, а также в таких областях, как:

— биометрические системы доступа к технологиям связи, сетевым и компьютерным базам;

— контроль доступа в хранилища информации и др.

У каждого человека есть набор характеристик, которые не меняются со временем, или такие, которые могут модифицироваться, но при этом принадлежать только конкретному лицу. В связи с этим можно выделить следующие параметры биометрических систем, которые используются в этих технологиях:

— динамические – особенности почерка, голоса и т. п.;

— статические — отпечатки пальцев, фотографирование ушных раковин, сканирование сетчатки глаза и другие.

Технологии биометрики в перспективе заменят обычные методы аутентификации человека по паспорту, так как встроенные чипы, карты и тому подобные новшества научных технологий будут внедряться не только в данный документ, но и в другие.

Небольшое отступление по поводу способов распознавания личности:

Идентификация – один ко многим; образец сравнивается со всеми имеющимися по определенным параметрам.

Аутентификация – один к одному; образец сравнивается с ранее полученным материалом. При этом лицо может быть известно, полученные данные человека сравниваются с имеющимся в базе образцом параметра этого лица;

Для того чтобы создать базу под определенного человека, необходимо считать его биологические индивидуальные параметры специальным устройством.

Система запоминает полученный образец биометрической характеристики (процесс записи). При этом, возможно, потребуется сделать несколько образцов для составления более точного контрольного значения параметра. Информация, которая получена системой, преобразовывается в математический код.

Помимо создания образца, система может запросить произвести дополнительные действия для того, чтобы объединить личный идентификатор (ПИН-код или смарт-карту) и биометрический образец. В дальнейшем, когда происходит сканирование на предмет соответствия, система сравнивает полученные данные, сравнивая математический код с уже записанными. Если они совпадают, что это значит, что аутентификация прошла успешно.

Система может выдавать ошибки, в отличии от распознавания по паролям или электронным ключам. В этом случае различают следующие виды выдачи неверной информации:

— ошибка 1 рода: коэффициент ложного доступа (FAR) — одно лицо может быть принято за другое;

— ошибка 2 рода: коэффициент ложного отказа в доступе (FRR) – человек не распознается в системе.

Для того чтобы исключить, к примеру, ошибки данного уровня, необходимо пересечение показателей FAR и FRR. Однако это невозможно, так как для этого нужно было бы проводить идентификацию человека по ДНК.

На данный момент наиболее известен метод биометрики. При получении паспорта современные граждане России в обязательном порядке проходят процедуру снятия отпечатков пальцев для внесения их в личную карточку.

Данный метод основан на неповторимости папиллярного узора пальцев и используется уже достаточно длительное время, начиная с криминалистики (дактилоскопия). Сканируя пальцы, система переводит образец в своеобразный код, который затем сравнивается с существующим идентификатором.

Как правило, алгоритмы обработки информации используют индивидуальное расположение определенных точек, которые содержат отпечатки пальцев – разветвления, окончание линии узора и т. д. Время, которое занимает перевод изображения в код и выдача результата, обычно составляет около 1 секунды.

Оборудование, в том числе и программное обеспечение для него, производятся на данный момент в комплексе и стоят относительно недорого.

Возникновение ошибок при сканировании пальцев руки (или обеих рук) возникают довольно часто в том случае, если:

— Присутствует несвойственная влажность или сухость пальцев.

— Руки обработаны химическими элементами, которые затрудняют идентификацию.

— Есть микротрещины или царапины.

— Имеется большой и непрерывный поток информации. К примеру, это возможно на предприятии, где доступ к рабочему месту осуществляется при помощи дактилоскопа. Так как поток людей значительный, система может давать сбой.

Наиболее известные компании, которые занимаются системами распознавания отпечатков пальцев: Bayometric Inc., SecuGen. В России над этим работают: «Сонда», BioLink, «СмартЛок» и др.

Рисунок оболочки формируется на 36 неделе внутриутробного развития, устанавливается к двум месяцам и не меняется на протяжении жизни. Биометрические системы идентификации по радужной оболочке являются не только наиболее точными среди других в этом ряду, но и одними из самых дорогих.

Преимущество способа состоит в том, что сканирование, то есть захват изображения, может происходить как на расстоянии 10 см, так и на 10-метровом удалении.

При фиксации изображения данные о расположении определенных точек на радужке глаза передаются в вычислитель, который затем выдает информацию о возможности допуска. Скорость обработки сведений о радужке человека составляет около 500 мс.

На данный момент данная система распознавания на биометрическом рынке занимает не более 9% от общего числа таких способов идентификации. В то же время доля рынка, которую занимают технологии по отпечаткам пальцев, составляет более 50%.

Сканеры, позволяющие захватывать и обрабатывать радужку глаза, имеют довольно сложную конструкцию и ПО, а поэтому на такие устройства установлена высокая цена. Кроме этого, монополистом в производстве систем распознавания радужки глаза человека изначально являлась компания Iridian. Затем на рынок стали заходить и другие крупные компании, которые уже занимались производством компонентов различных устройств.

Таким образом, на данный момент в России существуют следующие компании, которые формируют системы распознавания человека по радужке глаза: AOptix, SRI International. Однако данные фирмы не предоставляют показателей по количеству ошибок 1 и 2 рода, поэтому не факт, что что система не защищена от подделок.

Существуют биометрические системы безопасности, связанные с распознаванием по лицу в 2D и 3D-режимах. Вообще считается, что черты лица каждого человека уникальны и не меняются в течение жизни. Неизменными остаются такие характеристики, как расстояния между определенными точками, форма и т. д.

2D-режим является статическим способом идентификации. При фиксации изображения необходимо, что человек не двигался. Имеют также значение фон, наличие усов, бороды, яркий свет и другие факторы, которые мешают системе распознать лицо. Это означает, что при любых неточностях выданный результат будет неверным.

На данный момент этот метод не особо популярен из-за своей низкой точности и применяется только в мультимодальной (перекрестной) биометрии, представляющая собой совокупность способов распознавания человека по лицу и голосу одновременно. Биометрические системы защиты могут включать в себя и другие модули – по ДНК, отпечаткам пальцев и другие. Кроме этого, перекрестный способ не требует контакта с человеком, которого необходимо идентифицировать, что позволяет распознавать людей по фотографии и голосу, записанных на технические устройства.

3D-метод имеет совершенно другие входящие параметры, поэтому нельзя его сравнивать с 2D-технологией. При записывании образа используется лицо в динамике. Система, фиксируя каждое изображение, создает 3D-модель, с которой затем сравниваются полученные данные.

В этом случае используется специальная сетка, которая проецируется на лицо человека. Биометрические системы защиты, делая несколько кадров в секунду, обрабатывают изображение входящим в них программным обеспечением. На первом этапе создания образа ПО отбрасывает неподходящие изображения, где плохо видно лицо или присутствуют вторичные предметы.

Затем программа определяет и игнорирует лишние предметы (очки, прическа и др.). Антропометрические особенности лица выделяются и запоминаются, генерируя уникальный код, который заносится в специальное хранилище данных. Время захвата изображения составляет около 2 секунд.

Однако, несмотря на преимущество метода 3D перед 2D-способом, любые существенные помехи на лице или изменение мимики ухудшают статистическую надежность данной технологии.

На сегодняшний день биометрические технологии распознавания по лицу применяются наряду с наиболее известными вышеописанными методами, составляя приблизительно 20% всего рынка биометрических технологий.

Компании, которые занимаются разработкой и внедрением технологии идентификации по лицу: Geometrix, Inc., Bioscrypt, Cognitec Systems GmbH. В России над этим вопросом работают следующие фирмы: Artec Group, Vocord (2D-метод) и другие, менее крупные производители.

Лет 10-15 назад пришла новая технология биометрической идентификации – распознавание по венам руки. Это стало возможным благодаря тому, что гемоглобин, находящийся в крови, интенсивно поглощает инфракрасное излучение.

Специальная камера ИК фотографирует ладонь, в результате чего на снимке появляется сетка вен. Данное изображение обрабатывается ПО, и выдается результат.

Расположение вен на руке сравнимо с особенностями радужки глаза – их линии и структура не меняются со временем. Достоверность данного метода тоже можно соотнести с результатами, полученными при идентификации при помощи радужной оболочки.

Контактировать для захвата изображения считывающим устройством не нужно, однако использование этого настоящего метода требует соблюдения некоторых условий, при которых результат будет наиболее точным: невозможно получить его, если, к примеру, сфотографировать руку на улице. Также во время сканирования нельзя засвечивать камеру. Конечный результат будет неточным, если имеются возрастные заболевания.

Распространение метода на рынке составляет всего около 5%, однако к нему проявляется большой интерес со стороны крупных компаний, которые уже разрабатывали биометрические технологии: TDSi, Veid Pte. Ltd., Hitachi VeinID.

Сканирование рисунка капилляров на поверхности сетчатки считается самым достоверным методом идентификации. Он сочетает в себе наилучшие характеристики биометрических технологий распознавания человека по радужке глаз и венам руки.

Единственный момент, когда метод может дать неточные результаты – катаракта. В основном же сетчатка имеет неизменяемую структуру на протяжении всей жизни.

Минус этой системы заключается в том, что сканирование сетчатки глаза производится тогда, когда человек не двигается. Сложная по своему применению технология предусматривает длительное время обработки результатов.

Ввиду высокой стоимости биометрическая система не имеет достаточного распространения, однако дает самые точные результаты из всех предложенных на рынке методов сканирования человеческих особенностей.

Ранее популярный способ идентификации по геометрии рук становится менее применяемым, так как дает наиболее низкие результаты по сравнению с другими методиками. При сканировании фотографируются пальцы, определяются их длина, соотношение между узлами и другие индивидуальные параметры.

Специалисты говорят о том, что все существующие методы идентификации не настолько точны, как распознавание человека по форме уха. Однако есть способ определения личности по ДНК, но в этом случае происходит тесный контакт с людьми, поэтому его считают неэтичным.

Исследователь Марк Никсон из Великобритании заявляет, что методы данного уровня – биометрические системы нового поколения, они дают самые точные результаты. В отличии от сетчатки, радужки или пальцев, на которых могут с большой долей вероятности появиться посторонние параметры, затрудняющие идентификацию, на ушах такого не бывает. Сформированное в детстве, ухо только растет, не изменяясь по своим основным точкам.

Метод идентификации человека по органу слуха изобретатель назвал «лучевое преобразование изображения». Данная технология предусматривает захват изображения лучами разного цвета, что затем переводится в математический код.

Однако, по словам ученого, у его метода существуют и отрицательные стороны. К примеру, получению четкого изображения могут помешать волосы, которые закрывают уши, ошибочно выбранный ракурс и другие неточности.

Технология сканирования уха не заменит собой такой известный и привычный способ идентификации, как отпечатки пальцев, однако может использоваться наряду с ним.

Полагают, что это увеличит надежность распознавания людей. Особенно важной является совокупность различных методов (мультимодальная) в поимке преступников, считает ученый. В результате опытов и исследований надеются создать ПО, которое будет использоваться в суде для однозначной идентификации виновных лиц по изображению.

Идентификация личности может быть проведена как на месте, так и удаленным способом, при помощи технологии распознавания голоса.

При разговоре, к примеру, по телефону, система сравнивает данный параметр с имеющимися в базе и находит похожие образцы в процентном отношении. Полное совпадение означает, что личность установлена, то есть произошла идентификация по голосу.

Для того чтобы получить доступ к чему-либо традиционным способом, необходимо ответить на определенные вопросы, обеспечивающие безопасность. Это цифровой код, девичья фамилия матери и другие текстовые пароли.

Современные исследование в данной области показывают, что этой информацией довольно легко завладеть, поэтому могут применяться такие способы идентификации, как голосовая биометрия. При этом проверке подлежит не знание кодов, а личность человека.

Для этого клиенту нужно произнести какую-либо кодовую фразу или начать разговаривать. Система распознает голос звонящего и проверяет его принадлежность этому человеку – является ли он тем, за кого себя выдает.

Читайте также:  Почему когда много плачешь опухают глаза

Биометрические системы защиты информации данного типа не требуют дорогостоящего оборудования, в этом заключается их преимущество. Кроме этого, для проведения сканирования голоса системой не нужно иметь специальных знаний, так как устройство самостоятельно выдает результат по типу «истина — ложь».

Однако голос может меняться либо с возрастом, либо по причине болезни, поэтому метод надежен лишь тогда, когда с этим параметром все в порядке. На точность результатов могут влиять, кроме этого, посторонние шумы.

Идентификация человека по способу написания букв имеет место практически в любой сфере жизни, где необходимо ставить подпись. Это происходит, к примеру, в банке, когда специалист сличает образец, сформированный при открытии счета, с подписями, проставленными при очередном посещении.

Точность этого способа невысокая, так как идентификация происходит не с помощью математического кода, как в предыдущих, а простым сравнением. Здесь высок уровень субъективного восприятия. Кроме этого, почерк с возрастом сильно меняется, что зачастую затрудняет распознавание.

Лучше в этом случае использовать автоматические системы, которые позволят определить не только видимые совпадения, но и другие отличительные черты написания слов, такие как наклон, расстояние между точками и другие характерные особенности.

источник

Обеспечение транспортной безопасности

Биометрическое распознавание по радужной оболочке глаза является одним из самых надежных способов благодаря генетически обусловленной уникальности радужной оболочки глаза, которая различается даже у близнецов.

Биометрическое распознавание по радужной оболочке глаза является одним из самых надежных способов благодаря генетически обусловленной уникальности радужной оболочки глаза, которая различается даже у близнецов. Основным источником информации для идентификации этим способом служит специфическая ткань, которая окончательно формируется в глазах человека еще до рождения, примерно на 8-м месяце беременности матери. В медицине радужную оболочку глаза рассматривали в качестве инструмента для диагностики различных заболеваний, в частности, было обнаружено, что при определенных заболеваниях на радужной оболочке глаза появляются так называемые пигментные пятна. Для уменьшения влияния этого фактора на результат распознавания в биометрических системах используют черно-белые (полутоновые) изображения. Технология биометрического распознавания по радужной оболочке предусматривает несколько степеней защиты:

  • идентификация пользователя при условии затенения (или повреждения) радужной оболочки, но не более, чем на 2/3, то есть по оставшейся 1/3 изображения возможна идентификация с вероятностью ошибки 1 к 100 000;
  • обнаружение замены глаза и контактных линз на роговице – за счет контроля размера зрачка (система отличает живой глаз от изображения глаза, искуственного глаза и неживого глаза за счет использования инфракрасного освещения для определения состояния ткани глаза и контроля расширения/сужения зрачка).

Преимуществами технологии биометрического распознавания по радужной оболочке являются:

— независимость от косвенных факторов, таких как прическа, грим, макияж, и прочее;

— вероятность пропуска незарегистрированного пользователя равна вероятности ложного отказа в допуске зарегистрированному пользователю и составляет 1 к 1 200 000 (это самый высокий показатель по сравнению с другими типами биометрического распознавания).

Как работает система биометрического распознавания человека по радужной оболочке глаза? Технология распознавания базируется на формировании до 266 уникальных точек идентификации на изображении роговицы, решение принимается на основании результатов сравнения с точек идентификации с эталонными данными базы авторизованных пользователей. Захват видеоизображения глаза осуществляется регистрирующей аппаратурой на расстоянии до одного метра. Далее, система выполняет ряд действий: выделение зрачка, сбор и подсчет точек идентификации радужной оболочки, принятие решения и верификации или идентификации.

Мы протестировали высокоточную систему биометрического распознавания человека по радужной оболочке глаза, разработанную компанией eyeLock (США). Эта система обеспечивает быстрое распознавание человека на расстоянии и в движении. Оборудование eyeLock применяется для создания систем биометрического контроля и управления доступом (СКУД) на объектах с повышенными требованиями обеспечения безопасности, таких как: опасные производства, центры обработки данных, банки, объекты транспортной инфраструктуры. Для построения системы контроля доступа с биометрическим распознаванием по радужной оболочке eyaLock предлагает несколько типов оборудования: NANO NXT, HBOX, MYRIS.

NANO NXT – комплексное устройство, выполняющее функции считывателя биометрических данных, устройства обработки данных для выполнения алгоритма идентификации, хранилища эталонных данных базы авторизованных пользователей и контроллера управления замком или запирающим устройством. Устройство легко интегрировать в существующую систему управления доступом.

  • Регистрация и проверка соответствия самим устройством — «On Board»
  • Распознавание в темных очках или цветных линзах
  • Хранение в памяти «On Board» записей на 20 000 человек
  • Регистрация по 1 или 2 глазам
  • Возможность подключения кардридера для обеспечения двухфакторной аутентификации (глаза + карта)
  • Типы (протоколы) подключения: Wiegand, F/2/F, OSDP, PAC, реле и Ethernet для простой интеграции со всеми существующими платформами и СКУД
  • Питание через PoE (IEEE 802.3af)

HBOX — комплексное устройство, устанавливаемое на проходных с высокой пропускной способностью, обеспечивает биометрическое распознавание на расстоянии до 1,6 метра потока людей со скоростью 50 человек в минуту. Темные очки и цветные контактные линзы не являются препятствием для работы HBOX.

MYRIS — устройство для контроля логического доступа пользователей к информационным ресурсам. Устройство позволяет обеспечить дополнительную защиту доступа к информационным ресурсам предприятия и надежную идентификацию/авторизацию пользователей, это может быть актуально, например, для доступа к банковским системам при совершении операций повышенного риска и в других подобных случаях.

источник

Сканирование радужной оболочки глаза либо распознавание голоса при входе на секретный объект уже давно перестало быть только элементом шпионских фильмов. Биометрические системы защиты со временем становятся всё надежнее и доступнее, что дает повод обратить внимание на этот спектр технологий.

Для начала немного терминологии. Аутентификация – это процедура проверки подлинности с помощью считывания определенных параметров (как пароль или подпись) и сравнения их со значением в некой базе данных (пароль, введенный при регистрации, образцы подписи и т.д.). Биометрическая аутентификация происходит с использованием в качестве ключа биологических свойств, которые обладают уникальностью и поддаются измерению.

Достоинства этой группы методов лежат на поверхности: потерять, похитить или подделать параметр-ключ сложнее, чем пароль или карточку, ведь это свойство человека, которые всегда при нём.

Биометрическая аутентификация разделяется на два типа:

  1. Статическая, где используются постоянные в течение жизни свойства (рисунок отпечатка пальца, узор сетчатки или радужной оболочки глаза и т.д.).
  2. Динамическая, где используются приобретённые свойства человека (особенности выполнения привычных действий: движения, речь, подчерк).

Можно выделить и третий тип – комбинированная аутентификация, который является сочетанием первых двух и не имеет собственных отличительных черт.

На основании распознавания стабильных (относительно) и уникальных параметров человеческого тела создано большое разнообразие методов аутентификации с разными характеристиками.

Название метода аутентификации

Принцип работы

Достоинства

Дактилоскопическая

Считывание отпечатков пальцев, распознавание в них определённых элементов (точки, окончания и разветвления линий и тд) и переведение их в код

Высокая достоверность (низкий процент ошибок), сравнительно низкая стоимость устройств считывания, простота процедуры.

Уязвимость метода к подделке рисунка пальца и проблемы с распознаванием слишком сухой либо повреждённой кожи.

По радужной оболочке глаза

Производится снимок радужной оболочки, перерабатывается и сравнивается алгоритмом со значениями в базе данных.

Высокая достоверность, бесконтактное считывание, удобство объекта (повреждается или изменяется реже в сравнении с другими частями тела), возможность эффективной защиты от подделки.

Высокая стоимость, небольшое количество вариантов в продаже.

По чертам лица (двухмерная)

Распознавание лица на изображении с измерением расстояния между определенными точками

Не требует дорогого оборудования, допускает распознавание на большом расстоянии.

Низкая достоверность, искажающие воздействия освещения, мимики, ракурса.

По чертам лица (трехмерная)

Создание трёхмерной модели лица путём проецирования и считывания специальной сетки с последующей возможностью распознавания снимков с нескольких камер.

Высокая достоверность, бесконтактное считывание, отсутствие чувствительности к световым помехам, наличию очков, усов и т.д.

Высокая стоимость оборудования, искажающие воздействия мимики.

По венам руки

Делается снимок ладони инфракрасной камерой, на котором четко отображается и распознаётся уникальный рисунок вен.

Высокая достоверность, бесконтактное считывание, «невидимость» параметра в обычных условиях.

Уязвимость к засветке сканера и искажению картины некоторыми заболеваниями, слабая изученность метода.

По сетчатке глаза

Считывание инфракрасным сканером рисунка сосудов с поверхности сетчатки.

Высокая достоверность, сложность фальсификаций.

Сравнительно большое время обработки и дискомфорт при сканировании, высокая стоимость, слабое распространение на рынке.

По геометрии рук

Производится снимок кисти и считываются её геометрические характеристики (длина и ширина пальцев, ладони и т.д.)

Низкая стоимость, бесконтактное считывание.

Низкая достоверность, устаревший метод.

По термограмме лица

Инфракрасная камера считывает «тепловой портрет»

Низкая достоверность, слабое распространение.

Способов аутентификации на основании приобретённых черт разработано меньше, и по надёжности и достоверности они уступают большинству статических. В то же время, ценовая характеристика динамических методов и простота в применении добавляют им привлекательности.

Название метода аутентификации

Принцип работы

Достоинства

Микрофон записывает голос, который сравнивается с образцом.

Простое и доступное оборудование, легкость в применении, технология продолжает развиваться.

Низкая точность, уязвимость к звуковым помехам и искажению голоса при простуде, сложности с вариациями интонации и тембра для каждого человека.

Делается подпись при помощи специальной ручки или поверхности, может анализироваться как сама подпись, так и движения руки.

Относительная доступность и простота применения.

Независимо от того, какой метод аутентификации используется, все они служат одной цели: отличить человека или группу людей с разрешенным доступом от всех остальных.

В быту биометрические технологии встречаются все чаще. В первую очередь в смартфоне, пожизненном спутнике современного человека, выполнима реализация сразу нескольких методов подтвердить личность владельца:

  • по отпечатку пальца (при помощи специальной сканерной области);
  • по чертам лица (с использованием камеры);
  • по голосу (через микрофон).

Постоянно улучшаются не только технологии считывания, но и алгоритмы распознавания.

Уже выпущены модели со сканерами сетчатки и радужной оболочки глаза, но пока эти технологии нельзя назвать совершенными, т.к. есть информация, что их относительно просто обмануть.

Те же способы можно использовать для защиты доступа к информации на других гаджетах и ПК, к приборам в «умном доме». В продаже уже можно найти дверные замки, где вместо ключа служит палец, и рынок биометрических технологий для быта продолжает активно развиваться. Не смотря на постоянные инновации и усовершенствования других направлений, на данный момент, дактилоскопический метод является самым проработанным, распространённым и подходящим для персонального использования.

Существует множество предприятий, вход на территорию которых разрешен только определенному кругу лиц. Обычно они имеют ограждение, охрану и пропускные пункты. На пропускных пунктах находятся:

  • котроллер (управляющий элемент, принимающий решение разрешить ли доступ);
  • считыватель (сенсорный элемент, который воспринимает идентификаторы);
  • идентификаторы (ключи для получения доступа) у всех, кто должен пройти внутрь.

С точки зрения организации защитной системы, значение имеет количество проходящих контроль людей, допустимый уровень ошибок и устойчивость к обману.

Основанные на биометрических признаках (в качестве идентификаторов) системы в этом смысле хорошо себя зарекомендовали. При необходимости максимально строгого контроля используют наиболее надёжные методы (аутентификация по сетчатке, радужной оболочке, отпечатку пальца), иногда их комбинацию. Для рядовых предприятий (где основная цель – определить, присутствует ли рабочий на месте и сколько времени) подходят менее надежные, но более простые в исполнении решения (голосовая аутентификация и прочие).

Крупнейшие компании на рынке:

  • BioLink (Россия) выпускает системы с использованием комбинированных методов аутентификации, например BioLink U-Match 5.0 – сканер отпечатков пальцев со встроенным считывателем магнитных и/или чиповых карт.
  • ZKTeco (Китай) распространяет недорогие устройства, которые производят управление доступом и учет времени работы для заводов, финансовых и государственных учреждений. Используются отпечатки пальцев и геометрия лица.
  • Ekey biometric systems (Австрия) – европейский лидер, производит дактилоскопические сканеры, которые для большей точности применяют тепловой и радиочастотный анализ.

источник

Биометрический принцип является одним из самых надежных способов аутентификации пользователя. Данный принцип использует некоторые стабильные биометрические показатели человека, например, ритм нажимания клавиш клавиатуры, рисунок хрусталика глаза, отпечатки пальцев и др. Для снятия биометрических показателей необходимо использование специальных устройств, которые должны быть установлены на компьютерах высших уровней защиты. Проверка ритма работы на клавиатуре при вводе информации производится на обычной клавиатуре компьютера и по результатам проведенных в этой области экспериментов является достаточно стабильным и надежным. Даже при подглядывании за работой пользователя, набирающего ключевую фразу, не будет гарантирована идентификация злоумышленника при его попытке скопировать все действия при наборе фразы.

Сегодня для защиты от НСД к информации все чаще используют биометрические системы идентификации.

Характеристики, которые используются в биометрических системах, являются неотъемлемыми качествами каждого пользователя и поэтому не могут быть утеряны или подделаны.

Попробуй обратиться за помощью к преподавателям

Биометрические системы защиты информации построены на идентификации следующих характеристик:

  • отпечатков пальцев;
  • характеристик речи;
  • радужной оболочки глаза;
  • изображения лица;
  • рисунка ладони руки.

Оптические сканеры для считывания отпечатков пальцев устанавливают на клавиатуры, мыши, ноутбуки, флэш-диски, а также могут применяться как отдельные внешние устройства и терминалы (например, в банках или аэропортах).

Читайте также:  Системы защиты по радужной оболочке глаза

Доступ к информации будет недоступным в случае не совпадения узора отпечатка пальца пользователя, который допущен к информации.

Одним из традиционных способов идентификации является распознание человека по голосу. Интерес к данному методу поддерживается внедрением голосовых интерфейсов в операционные системы.

Голосовая идентификация является бесконтактной и разработаны системы ограничения доступа к информации на основе частотного анализа речи.

Уникальной биометрической характеристикой каждого пользователя является радужная оболочка глаза. На изображение глаза, которое выделяется из изображения лица, накладывается специальная маска штрих-кодов. В результате получают матрицу, индивидуальную для каждого человека.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Специальные сканеры для распознания по радужной оболочке глаза подключаются к компьютеру.

Идентификация человека по лицу происходит на расстоянии.

При идентификации по лицу учитывается его форма, цвет и цвет волос. К важным признакам относятся также координаты точек лица в местах, которые соответствуют смене контраста (нос, глаза, брови, рот, уши и овал).

На данном этапе развития информационных технологий экспериментируют выдачу новых загранпаспортов, микросхема которых хранит цифровую фотографию владельца.

При идентификации по ладони руки используются биометрические характеристики простой геометрии руки – размеров и формы, а также контролируются некоторые информационные знаки на тыльной стороне руки (узоры расположения кровеносных сосудов, складки на сгибах между фалангами пальцев).

Сканеры идентификации по ладони руки устанавливаются в некоторых банках, аэропортах и на атомных электростанциях.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

источник

Размер рынка распознавания радужной оболочки достигнет $ 3,6 млрд к 2020 году. Совокупные темпы годового роста в период между 2015 и 2020 годом составят 23,4 %. Такие прогнозы были озвучены исследовательским агентством MarketsandMarkets. Основными драйверами названы: общее снижение стоимости и большое количество правительственных инициатив.

Frost&Sullivan опубликовала доклад «Пятилетний анализ перспектив рынка аутентификации по радужной оболочке глаза», в котором прогнозируется рост доходов от $ 142 900 000 в 2014 году до $ 167 900 000 в 2019 году.

Точность верификации по радужной оболочке глаза и её неизменное состояние на протяжении всей жизни человека — являются достаточно убедительными аргументами для развертывания технологии.

«Глобальные угрозы безопасности и активность мошенников усиливают необходимость в системах распознавания радужной оболочки глаза, — считает Рам Рави, промышленный аналитик Frost&Sullivan. — В результате, технология может найти применение в национальных системах идентификации, службе пограничного контроля и правоохранительных органах.»

Также аналитики ожидают рост популярности этих бесконтактных биометрических систем в гостиничной и финансовой индустрии, государственных ИТ-системах, мобильном банкинге и, особенно, в сфере здравоохранения. Кроме того, пока камеры смартфонов в состоянии захватить отдельные образцы радужной оболочки, перспективы развития — очевидны.

Что касается более долгосрочных прогнозов:

Tractica опубликовала новый доклад под названием «Iris Recognition», предсказывающий, что к 2024 году поставки устройств распознавания радужной оболочки глаза составят $262 млн..

В докладе отмечается, что поставки устройств — в том числе как автономных систем распознавания радужной оболочки, так и биометрических компонентов для мобильных устройств — вырастет с 7,9 млн ($ 587 млн) в 2015 году до 55,6 млн ($ 1920000000) в год к 2024 году. В течение этого 10-летнего периода, совокупные поставки на мировой рынок достигнут 262,8 млн ($ 11,7 млрд) при среднегодовом темпе роста в 24%.

«Аутентификация по радужной оболочке глаза признана одним из самых эффективных биометрических методов последнего десятилетия, — говорит Боб Локхарт, главный аналитик Tractica. — Такие системы дают очень низкий процент ложных срабатываний. Скорость обработки приближается к 200 миллионов шаблонов в секунду. Тем не менее, технология распознавания радужной оболочки уступает конкурирующей технологии распознавания отпечатков пальцев, за счет более низкой цены последней».

«Несмотря на потенциал метода среди различных биометрических систем, тормозящим фактором остается его высокая стоимость, — соглашается Рам Рави. — Однако, постоянные исследования и разработки позволят снизить затраты, а расширение сферы использования за счет госзаказов — позволит технологии аутентификации по радужной оболочке глаза занять заметный сегмент на рынке биометрических СКУД».

К 2020 году мировой рынок аутентификации по радужной оболочке глаза вырастет более чем на 21% до $5 млрд, согласно отчету TechNavio. Рост связан с увеличением интеграции систем распознавания по радужной оболочки глаза в мультимодальные биометрические системы крупных государственных проектов, такие как пограничный контроль, электронные паспорта, регистрация избирателей данных и т.п

Аутентификация по радужной оболочке глаза становится все более доступной.

«С точки зрения продукта, многие сканирующие радужку устройства теперь совершенствуют баланс легкости использования, точности, цены и производительности», — говорит Джоуи Притайкин, вице-президент по маркетингу и управлению продуктами для биометрии фирмы Tascent.

Ссылаясь на надежность технологии, при общем снижении стоимости приложений и оборудования, многие эксперты предсказывают, что сканирование глаза людей, станет распространенным методом идентификации.

«Радужная оболочка глаза — золотой биометрический идентификатор. Отпечатки пальцев имеют пределы, радужка — нет. Идентификация пользователя по радужной оболочке глаза выделяется во многих отношениях по сравнению с другими коммерчески жизнеспособными биометрическими технологиями. Каждый хочет ее использовать. В прошлом это было слишком дорого и слишком сложно, но это меняется», — говорит Марк Клифтон, президент продуктов и решений Princeton Identity (ранее SRI International).

В первую очередь, повышение доступности технологии связано с завершением срока действия многих ключевых патентов на биометрию радужной оболочки глаза.

Современные высокотехнологичные камеры обеспечивают простой захват биометрического идентификатора без дополнительного позиционирования положения глаз пользователя.

Основная технология также становится дешевле. Если раньше распознавание пользователя по глазам требовало специализированных, достаточно дорогих, аппаратных средств, выпускаемых по спец заказу, то сейчас оборудование, необходимое для захвата и обработки радужной оболочки, встраивается в большинство смартфонов. С миниатюризацией и промышленным выпуском основных компонентов, сканеры радужной оболочки вскоре могут стать сравнимы по цене с высококачественными считывателями отпечатков пальцев.

Чтобы стать мейнстримом, биометрическая технология должна быть принята потребителем. В течение многих десятилетий биометрия отпечатка пальцев изо всех сил старается преодолеть стереотип ассоциативной связи с преступностью. Прорыв произошел, когда сканеры отпечатков пальцев появились на iPhone.

В биометрии радужной оболочки глаза так же есть несколько мифов о сканировании, вроде небезопасности для зрения, которые должны постепенно развеяться.

«Производители уже встраивают сканеры радужной оболочки в свои мобильные телефоны и планшеты. На следующем этапе технология внедряться в дверные замки, замки, ноутбуки или даже такие вещи как холодильники. Простота и удобство использования будут стимулировать принятие людей. Поскольку технология становится менее дорогой, потенциал будет расти. Принятие займет некоторое время, но очевидно большое будущее для биометрии радужной оболочки глаза», — говорит Марк Клифтон, президент продуктов и решений Princeton Identity (ранее SRI International).

В августе 2016 компания EyeLock объявила, что разработала технологию распознавания радужной оболочки, позволяющую идентифицировать человека на расстоянии до 60 см и способную работать даже если пользователь носит очки или контактные линзы. Разработчики прогнозируют активное применение технологии в мобильных устройствах.

Появление технологии произошло почти сразу после выхода смартфона Samsung с аутентификацией по радужной оболочке глаза. Таким образом, если учитывать опыт Apple по популяризации биометрии, и у этого метода самые радужные перспективы.

Одна из уникальных биометрических характеристик, используемых для идентификации, — радужная оболочка глаза. При верификации используется около 260 ключевых точек (для сравнения, верификация отпечатка пальца использует около 16 ключевых точек). При этом сам шаблон занимает небольшой объем памяти, что позволяет быстро производить аутентификацию пользователя, а так же использовать большие базы данных при сравнительно небольших вычислительных ресурсах.

Системы контроля и учета доступа с идентификацией по радужной оболочке глаза имеют коэффициенты FAR – 0,00001% и FRR – 0,016%. При реализации СКУД со строгой аутентификацией по двум глазам коэффициент ложного пропуска уменьшается в геометрической прогрессии: FAR – 10-10% при FRR – 0,016%.

Считается, что подделать идентификационные данные при использовании этого метода – невозможно. По крайней мере, об успешных попытках ничего не известно. Дело в том, что кроме индивидуального рисунка радужной оболочки, человеческий глаз обладаете уникальными отражающими характеристиками (за счет состояния тканей и естественного увлажнения), которые учитываются в процессе считывания информации. А для дополнительного повышения уровня безопасности, некоторые СКУД также фиксируют непроизвольные движения глазного яблока, присущие живому человеку. Кстати аутентификация по радужной оболочке мертвого человека также считается невозможной: после смерти зрачок расширяется, делая область радужки слишком узкой и, следовательно, непригодной для сканирования.

Кроме того, эта биометрическая характеристика имеет малую вероятность изменения с течением времени: единственными причинами могут быть оперативное медицинское вмешательство или серьезная травма.

Метод распознавания по радужной оболочке глаза позволяет создавать бесконтактные системы контроля доступа, действующие на довольно большом расстоянии и способные к быстрой аутентификации в потоковом режиме. Это дополнительное достоинство позволяет использовать их для организации систем безопасности крупных объектов.

Ограничивающим фактором для распространения систем идентификации по радужной оболочке глаза является их высокая стоимость, а для российского рынка – и низкая доступность ввиду отсутствия отечественных производителей. .

При сканировании глаза выделяется область зрачка и область самой радужной оболочки. Получаемое кольцо программно очищается от шумов, и преобразуется в прямоугольный формат — Iris Code, содержащий информацию об уникальных характеристиках объекта в черно-белом виде (наподобие штрих-кода или QR-кода). Далее Iris Code сравнивается с базой зарегистрированных шаблонов. Скорость обработки при этом крайне высока, что позволяет использовать систему для работы с большими базами данных, в т.ч. выполняя задачи правоохранительных органов и других государственных организаций.

Основные тонкости, при создании СКУД на основе метода аутентификации по радужной оболочке глаза, связаны с организацией освещения. В первую очередь, стоит учитывать, что вся поверхность глаза имеет прекрасную отражающую способность и появление на ней световых бликов и отражения посторонних объектов – затрудняет считывание данных. Поэтому, как правило, системы, использующие этот биометрический метод, комплектуются собственным источником освещения, создающим преобладающий световой фон на объекте (иногда работающем в режиме «вспышки»).

Кроме того, собственное освещение решает еще несколько задач. Первая – поиск объекта идентификации. Найти глаз в видеопотоке движущихся людей – задача не простая. Поэтому биометрические системы распознавания радужной оболочки глаза, в первую очередь, ищут специфический световой блик, отражаемый зрачком. И уже в окрестности блика детектируется глаз.

Вторая задача, решаемая при помощи освещения – достаточная ширина радужной оболочки, для считывания индивидуальных биометрических данных. В условиях недостаточной освещенности зрачок имеет свойство расширяться, что не позволяет считать рисунок радужной оболочки глаза. При этом, человеческий глаз реагирует только на видимую часть светового потока, поэтому решить проблему при помощи ИК-подсветки не представляется возможным.

Кстати, ИК-подсветка является одним из стандартных элементов СКУД с распознаванием радужной оболочки, поскольку структура рисунка темных глаз в видимом свете практически неразличима. Однако, рисунок светлых глаз, напротив, в почти неразличим в ИК-диапазоне, а регистрируется в видимом свете. Стандартно, в системах идентификации радужной оболочки глаза рекомендуется использование света 700-900 нм. Но в таком широком диапазоне возможны сильные изменения регистрируемой картины. Дополнительный источник дневного света позволяет создать дополнительные условия для регистрации рисунка светлых глаз, оставив ИК-диапазон для более темных.

Распознавание по сетчатке глаза часто путают с методом распознавания радужной оболочки, что неверно. Идентификация объекта в данном случае осуществляется по уникальному рисунку сосудов и капилляров на сетчатке глаза. Метод является прекрасно защищенным от подделки биометрических данных, поскольку их невозможно сфотографировать или осуществить несанкционированный захват другим простым способом. При этом, системы аутентификации по сетчатке глаза обладают очень высоким уровнем надежности: FAR – 0,0001% при FRR – 0,4%.

На этом достоинства заканчиваются и начинаются недостатки. Процедура идентификации довольно длительна и, можно считать, контактна: пользователю необходимо наблюдать сквозь окуляр удаленную световую точку. При этом малейшее движение, неверный наклон головы или неправильная фокусировка на источнике света — ведут к отказу распознавания.

Сетчатка, в отличие от радужной оболочки глаза, более подвержена изменениям в результате травм и заболеваний (например, кровоизлияние на сетчатку глаза или катаракта). Также сетчатка содержит элементы зрительного нерва и слепое пятно, геометрия которых тоже может изменяться со временем.

Стоимость подобной системы крайне высока.

В целом, биометрические системы аутентификации по сетчатке глаза получили довольно узкое распространение: для организации систем безопасности на объектах повышенной секретности. На сегодняшний день на рынке подобные СКУД практически отсутствуют.

Материал спецпроекта «Без ключа»

Спецпроект «Без ключа» представляет собой аккумулятор информации о СКУД, конвергентном доступе и персонализации карт

Читайте также:  Чем котенку можно промыть глаза в домашних условиях

источник

Технологии сканирования и распознавания радужной оболочки и сетчатки глаза — надежные методы биометрической идентификации. Они обладают различными характеристиками, которые оказывают сильное влияние на их производительность в зависимости от условий окружающей среды и целей внедрения. Оба биометрических метода используют бесконтактные сканеры, но между распознаванием радужной оболочки и сканированием сетчатки глаза есть и заметные различия. Одно из этих различий заключается в том, что распознавание радужной оболочки считается неинвазивным методом, а сканирование сетчатки глаза — инвазивным, так как во время процесса сканирования в глаза попадают лучи видимого света.

Эти биометрические технологии идентификации часто неправильно воспринимаются как одно и то же, несмотря на их отдельные отличия. В этой статье мы обсудим различия между этими двумя технологиями, которые сегодня активно внедряют в системы контроля доступа.

Сетчатка глаза человека представляет собой тончайшую ткань, состоящую из нервных клеток, расположенных в задней части глаза. Из-за сложного расположения капилляров, питающих сетчатку кровью, сетчатка каждого человека является уникальной. Сеть кровеносных сосудов в сетчатке настолько сложна, что отличается даже у идентичных близнецов. Рисунок сетчатки может измениться в результате развития таких заболеваний как, например, сахарный диабет или глаукома, однако, в остальных случаях сетчатка, как правило, остается неизменной с момента рождения до самой смерти.

Биометрическая технология сканирования сетчатки используется для отображения уникального рисунка сетчатки человека. Кровеносные сосуды внутри сетчатки поглощают свет с большей интенсивностью, чем окружающие ткани, поэтому их легко идентифицировать. Сканирование сетчатки глаза осуществляется путем проецирования невоспринимаемого глазом луча инфракрасного света в глаз человека через окуляр сканера. Поскольку кровеносные сосуды сетчатки абсорбируют этот свет интенсивнее, чем остальные части глаза, во время сканирования создается определенный узор, который преобразуется в компьютерный код и сохраняется в базе данных. Сканирование сетчатки также имеет медицинское применение. Такие инфекционные заболевания как СПИД, сифилис, малярия, ветряная оспа, а также такие наследственные заболевания как лейкемия, лимфома и серповидно-клеточная анемия оказывают свое воздействие на глаза. Беременность также влияет на глаза. Кроме того, признаки хронических заболеваний, таких как хроническая сердечная недостаточность или атеросклероз, также сначала проявляются в глазах.

Биометрические системы идентификации на основе сканирования сетчатки глаз в основном используются в государственных учреждениях с высокой степенью защиты, таких как ФБР, ЦРУ и NASA. Одна из причин, почему биометрические решения идентификации на основе считывания сетчатки глаз не были широко распространены — это их высокая стоимость.

Радужная оболочка глаза человека представляет собой тонкую круглую структуру глаза, которая отвечает за контроль размера и диаметра зрачков и, следовательно, количество света, попадающего на сетчатку. «Цвет глаз» — это цвет именно радужной оболочки глаза.

Распознавание радужной оболочки глаз представляет собой автоматизированный метод биометрической идентификации, который использует математические методы для распознавания уникального рисунка радужной оболочки глаз того или иного человека.

В отличие от сканирования сетчатки глаза, для распознавания радужной оболочки применяется технология использования едва уловимой инфракрасной подсветки, позволяющей получить изображения сложной структуры радужной оболочки глаза. Сотни миллионов людей в странах по всему миру, в целях безопасности и удобства, уже зарегистрированы в системах распознавания радужной оболочки глаза.

Использование биометрической технологии распознавания радужной оболочки глаза для идентификации пациентов в здравоохранении стремительно растет — вслед за применением в сфере пограничного контроля, в системах контроля доступа и учета рабочего времени. Благодаря сочетанию надежности, точности, скорости и относительно низким затратам (плюс тот факт, что технология является бесконтактной и неинвазивные), технология распознавания радужной оболочки глаз приобретает все большую популярность в качестве решения индивидуальной идентификации в широком спектре отраслей промышленности. Еще одним преимуществом радужной оболочки глаза в целях идентификации является неизменность ее структуры в течение десятилетий после первоначальной регистрации.

В заключение, давайте рассмотрим различия между технологиями распознавания радужной оболочки и сканирования сетчатки глаза:

  • Точность сканирования сетчатки может зависеть от заболевания; структура радужной оболочки является более стабильной.
  • Распознавание радужной оболочки похоже на фотосъемку и может быть сделано с расстояния; в то же время сканирование сетчатки требует очень близкого приближения глаза к окуляру.
  • Распознавание радужной оболочки получило более широкое признание в коммерческой среде, чем сканирование сетчатки глаза.
  • В то время как обе эти технологии являются бесконтактными, сканирование сетчатки глаза считается инвазивной технологией, поскольку подразумевает попадание в глаза лучей видимого света, тогда как распознавание радужной оболочки является неинвазивным.

Важно понимать различия между сканированием сетчатки глаза и распознаванием радужной оболочки, если вы планируете инвестировать в биометрию и ожидаете высокую отдачу от инвестиций. Мы надеемся, что смогли четко указать на различия между этими двумя современными технологиями безопасности.

источник

1.4.2. Биометрические системы защиты

В настоящее время для защиты от несанкционированно­го доступа к информации все более часто используются био­метрические системы идентификации. Используемые в этих системах характеристики являются неотъемлемыми качес­твами личности человека и поэтому не могут быть утерян­ными и подделанными. К биометрическим системам защиты информации относятся системы идентификации:

  • •по отпечаткам пальцев;
  • •по характеристикам речи;
  • •по радужной оболочке глаза;
  • •по изображению лица;
  • •по геометрии ладони руки.

Идентификация по отпечаткам пальцев. Оптические сканеры считывания отпечатков пальцев устанавливаются на ноутбуки, мыши, клавиатуры, флэш-диски, а также при­меняются в виде отдельных внешних устройств и термина­лов (например, в аэропортах и банках) (рис. 1.18).

Если узор отпечатка пальца не совпадает с узором допу­щенного к информации пользователя, то доступ к информа­ции невозможен.

Идентификация по характеристикам речи. Идентифика­ция человека по голосу — один из традиционных способов распознавания, интерес к этому методу связан и с прогнозами внедрения голосовых интерфейсов в операционные системы. Можно легко узнать собеседника по телефону, не видя его. Также можно определить психологическое состояние по эмо­циональной окраске голоса. Голосовая идентификация бес­контактна и существуют системы ограничения доступа к ин­формации на основании частотного анализа речи (рис. 1.19).

Каждому человеку присуща индивидуальная частотная характеристика каждого звука (фонемы).

В романе А. И. Солженицына «В круге первом» описана голосовая идентификация человека еще в 40-е годы прошло­го века.

Идентификация по радужной обо­лочке глаза.

Радужная оболочка глаза является уникальной для каждого чело­века биометрической характеристикой. Она формируется в первые полтора года жизни и остается практически неизмен­ной в течение всей жизни.

Изображение глаза выделяется из изо­бражения лица и на него накладывается специальная маска штрих-кодов (рис. 1.20). Результатом является матри­ца, индивидуальная для каждого челове­ка.

Для идентификации по радужной об­олочке глаза применяются специальные сканеры, подключенные к компьютеру.

Идентификация по изображению лица. Для идентифи­кации личности часто используется технологии распознава­ния по лицу. Они ненавязчивы, так как распознавание чело­века происходит на расстоянии, без задержек и отвлечения внимания и не ограничивают пользователя в свободе пере­мещений.

По лицу человека можно узнать его историю, симпатии и антипатии, болезни, эмоциональное состояние, чувства и намерения по отношению к окружающим. Всё это представ­ляет особый интерес для автоматического распознавания лиц (например, для выявления потенциальных преступни­ков).

Идентификационные признаки учитывают форму лица, его цвет, а также цвет волос. К важным признакам можно отнести также координаты точек лица в местах, соотве­тствующих смене контраста (брови, глаза, нос, уши, рот и овал).

В настоящее время начинается выдача новых загранпас­портов, в микросхеме которых хранится цифровая фотогра­фия владельца.

Идентификация по ладони руки. В биометрике в целях идентификации используется простая геометрия руки — размеры и форма, а также некоторые информационные знаки на тыльной стороне руки (образы на сгибах между фалангами пальцев, узоры расположения кровеносных сосудов).

Сканеры идентификации по ладони руки установлены в некоторых аэропортах, банках и на атомных электростан­циях (рис. 1.21).

1. Какие существуют биометрические методы защиты информа­ции?

источник

Знакомство с видами биометрической системы зашиты информации и использованием их на практике.

В настоящее время современную систему безопасности нельзя представить не только без привычных средств, обеспечивающих защищенность объекта, но и без применения возможностей биометрических технологий, которые привлекают все большее внимание потребителей.

Биометрические системы безопасности — системы контроля доступа, основанные на идентификации человека по биологическим признакам, таким как структура ДНК, рисунок радужной оболочки глаза, сетчатка глаза, геометрия и температурная карта лица, отпечаток пальца, геометрия ладони. Часто используются еще и уникальные динамические особенности человека — подпись и клавиатурный почерк, голос, походка.

Биометрические системы безопасности представляют собой сравнительно новый вид систем безопасности. Понятие «биометрия» появилось в конце девятнадцатого века. В конце двадцатого века интерес к биометрии значительно возрос благодаря тому, что эта отрасль науки нашла свое применение в разработках новых технологий безопасности. Например, биометрическая система может контролировать доступ к информации и хранилищам в банках, ее можно использовать на предприятиях, занятых обработкой ценной информации, для защиты ЭВМ, средств связи и т. д.

Суть биометрических систем сводится к использованию компьютерных систем распознавания личности по уникальному генетическому коду человека. Биометрические системы безопасности позволяют автоматически распознавать человека по его физиологическим или поведенческим характеристикам. По конструктивным особенностям можно отметить системы, выполненные в виде моноблока, нескольких блоков и в виде приставок к компьютерам. Клавиатура, микрофон или веб-камера, подключенная к компьютеру, и специальное программное обеспечение — это все, что нужно для построения простейшей биометрической системы защиты информации.

К биометрическим системам защиты информации относят:

• Идентификация по отпечаткам пальцев;

• Идентификация по характеристикам речи;

• Идентификация по радужной оболочке глаза;

• Идентификация по изображению лица;

• Идентификация по геометрии ладони руки.

Диапазон проблем, решение которых может быть найдено с использованием новых технологий, чрезвычайно широк:

• Предотвратить проникновение злоумышленников на охраняемые территории и в помещения за счет подделки, кражи документов, карт, паролей и создает психологический барьер для потенциального злоумышленника;

• процесс общения пользователя с биометрическим сканером происходит легко и требует минимальных временных затрат.

• ограничить доступ к информации и обеспечить персональную ответственность за ее сохранность;

• обеспечить допуск к ответственным объектам только сертифицированных специалистов;

• избежать накладных расходов, связанных с эксплуатацией систем контроля доступа (карты, ключи);

• исключить неудобства, связанные с утерей, порчей или элементарным забыванием ключей, карт, паролей, а также избавление пользователей от необходимости запоминать идентификационный код и пароли;

• организовать учет доступа и посещаемости сотрудников;

• в случае каждого обращения к системе можно доказать авторство того или иного действия, например, сохранить биометрические данные злоумышленника.

Надежность биометрических систем

Кроме того, важным фактором надежности является то, что она абсолютно никак не зависит от пользователя.Еще одним фактором, положительно влияющим на надежность биометрических систем, является простота идентификации для пользователя. Дело в том, что, например, сканирование отпечатка пальца требует от человека меньшего труда, чем ввод пароля. А поэтому проводить эту процедуру можно не только перед началом работы, но и во время ее выполнения, что, естественно, повышает надежность защиты. Особенно актуально в этом случае использование сканеров, совмещенных с компьютерными устройствами. Так, например, есть мыши, при использовании которых большой палец пользователя всегда лежит на сканере. Поэтому система может постоянно проводить идентификацию, причем человек не только не будет приостанавливать работу, но и вообще ничего не заметит.

Работа биометрической системы

У всех биометрических технологий существуют общие подходы к решению задачи идентификации, хотя все методы отличаются удобством применения, точностью результатов.

Любая биометрическая технология применяется поэтапно:

• извлечение индивидуальной информации;

• сравнение текущего шаблона с базой данных.

Биометрическая система распознавания устанавливает соответствие конкретных физиологических или поведенческих характеристик пользователя некоторому заданному шаблону. Обычно биометрическая система состоит из двух модулей: модуль регистрации и модуль идентификации.

Сферы применения биометрических систем

Выбор отраслей, наиболее перспективных для внедрения биометрии, с точки зрения аналитиков, зависит, прежде всего, от сочетания двух параметров: безопасности (или защищенности) и целесообразности использования именно этого средства контроля или защиты. Главное место по соответствию этим параметрам, бесспорно, занимают финансовая и промышленная сфера, правительственные и военные учреждения, медицинская и авиационная отрасли, закрытые стратегические объекты. Данной группе потребителей биометрических систем безопасности в первую очередь важно не допустить неавторизованного пользователя из числа своих сотрудников к неразрешенной для него операции, а также важно постоянно подтверждать авторство каждой операции.

Современные возможности биометрических технологий уже сегодня обеспечивают необходимые требования по надежности идентификации, простоте использования и низкой стоимости оборудования защиты информации, передаваемой по телекоммуникационным сетям. Биометрические технологии позволяют уже сегодня реализовать наиболее надежные методы защиты информации и являются весьма перспективными на ближайшие десятилетия.

источник

Источники:
  • http://tbexpert.ru/biometriya_eyelock/
  • http://safeness.xyz/smart-house/35-biometricheskie-sistemy-zaschity.html
  • http://spravochnick.ru/informacionnaya_bezopasnost/biometricheskie_sistemy_zaschity/
  • http://www.techportal.ru/glossary/kontrol-dostupa-po-raduzhnoi-obolochke-glaza.html
  • http://worldvision.com.ua/articles/raznitsa-mezhdu-raduzhnoy-obolochkoy-i-setchatkoy-glaza-v-sfere-biometricheskoy-identifikatsii
  • http://txtbooks.ru/informatika/11-klass/103-ugrinovich-11-klass/381-15-1-4-2-biometricheskie-sistemy-zashchity.html
  • http://wiki.soiro.ru/%D0%91%D0%B8%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%8B_%D0%B7%D0%B0%D1%89%D0%B8%D1%82%D1%8B_2