Меню Рубрики

Бинокулярное зрение у птиц что это такое

Мы привыкли смотреть на мир двумя глазами сразу, пользоваться бинокулярным, глубинным зрением. У большинства птиц глаза расположены по бокам головы — это расширяет общее поле зрения, но сужает бинокулярное. Зато птицы могут пользоваться глазами независимо. Подобно тому как мы можем взять одной рукой один предмет, а другой рукой — другой и манипулировать ими по отдельности, чайка, патрулирующая водоем, может левым глазом следить за соседкой слева, а правым — за соседкой справа, не забывая время от времени поглядывать вниз двумя глазами сразу. Общее поле зрения, складывающееся из монокулярных и бинокулярного, у чаек, воробьев и голубей немного более 300°, у кур — 320°, а у козодоя — 340°! Бинокулярное зрение — лишь частный случай зрительных восприятий птиц. У человека оно составляет 150°. Из птиц никто не может догнать его в этом. Даже у совы и козодоя оно всего 60°, у голубя — 25-30°, у воробья, снегиря, зяблика — 10-20°, а у кукушки его нет вообще. Своеобразно расположены глаза у лесного кулика вальдшнепа. Они большие, выпуклые и так смещены назад, что бинокулярное поле у них образуется не спереди, а сзади.

Когда вальдшнеп на кормежке втыкает клюв в землю, он прекрасно видит, что творится непосредственно сзади пего. У цапель бинокулярное поле смещено вниз под клюв. Это связано с их манерой затаиваться, подняв клюв вертикально вверх. Глаза при этом слегка поворачиваются вниз, и птица наблюдает за тем, что происходит перед ней, двумя глазами сразу. Использование бинокулярного зрения очень важно для точной оценки расстояния, восприятия глубины пространства и всех движений объектов в нем. Благодаря бинокулярному зрению ласточки, например, успешно ловят в воздухе мелких -насекомых, а сорокопут демонстрирует прицельные броски при охоте на юрких ящериц и мышат. В глазах этих птиц существует вторая боковая область острого зрения с ямкой. Все они охотятся за активной подвижной добычей. Кроме сорокопутов и ласточек, это ястребы, соколы, крачки, щурки, зимородки и некоторые другие. При поисковом полете они используют монокулярное зрение и центральную ямку сетчатки, при погоне и ловле добычи — бинокулярное зрение с фокусировкой на боковые ямки.

Глаза – это один из основных органов чувств. Благодаря им все живые существа имеют возможность воспринимать окружающий мир. Считается, что зрение обеспечивает нам около 90% поступающей информации. Как известно, чтобы нормально видеть предметы, необходима сочетанная работа обоих глаз. Благодаря бинокулярному зрению мы имеем способность воспринимать не только размер и форму изображения, но и его нахождение в пространстве. В отличие от людей, некоторые живые существа (птицы, рептилии, лошади) видят предметы каждым глазом по отдельности. Иными словами, для них характерно монокулярное зрение. В некоторых случаях это наблюдается и у людей. Так как такая способность не свойственна человеку, данный тип видения считается патологическим и требует лечения.

Что означает монокулярное зрение?

Наука, занимающаяся проблемами зрения, называется офтальмологией. Она охватывает не только заболевания глаз, но и изучает развитие, различные типы видения у людей и других живых существ. К примеру, можно узнать о такой особенности птиц, как монокулярное зрение. Этот тип видения позволяет некоторым животным различать предметы каждым глазом в отдельности. Известно, что зрение птиц в несколько раз лучше, чем у людей. В связи с тем, что их глаза расположены по бокам, они видят большую часть пространства вокруг себя. Поле зрения птиц составляет около 300 градусов. Это дает им возможность видеть изображения не только впереди и сбоку от себя, но и сзади. Исходя из этого, под монокулярным зрением подразумевается способность восприятия предметов одним глазом. В норме оно встречается у всех птиц за исключением сов, а также у многих животных.

Разница между монокулярным и бинокулярным зрением

Благодаря офтальмологии можно ответить на вопрос о том, чем отличается монокулярное зрение от бинокулярного зрения. Каждый из этих типов видения имеет свои преимущества и недостатки. Монокулярное зрение позволяет получать информацию лишь о форме и размере изображения. Тем не менее такой тип видения необходим животным, так как благодаря этому они могут рассматривать предметы одновременно с двух сторон. В результате их поле зрения увеличивается. Это нужно для охоты и защиты в животном мире.

Строение органа зрения у людей отличается от птиц и зверей. Центр видения находится в коре головного мозга. Благодаря перекресту нервов информация, получаемая от каждого глаза, преобразуется в единое изображение. То есть человек обладает бинокулярным зрением. Помимо того, что данный тип видения отличается способностью рассматривать предмет сразу двумя глазами, он и имеет и другие особенности. Для бинокулярного зрения характерно восприятие изображения в пространстве. Под этим подразумевается возможность отличать, на каком расстоянии от глаз находится предмет, объемный он или плоский.

Патологии, при которых наблюдается монокулярное зрение

Как известно, и монокулярное, и бинокулярное зрение встречаются у людей. Тем не менее разобщенность между видением, которая считается нормой для животных, для человека является патологией. Монокулярное зрение у людей бывает 2 видов. В первом случае подразумевается способность видеть лишь одним глазом постоянно (правым или левым). Это может наблюдаться при односторонней слепоте. Под другим видом монокулярного зрения подразумевается попеременное видение то правым, то левым глазом. Данный тип встречается при диплопии. Причиной могут стать врожденные нарушения глаза или травма.

Диагностика типов зрения

Важно вовремя диагностировать не только само монокулярное зрение, но и его причину. Часто источником проблемы становятся травмы глаз, сосудистые нарушения, врожденные аномалии. Поэтому помимо инструментальных методов необходимо подробно расспросить пациента о том, когда поменялась способность видеть. Тип зрения можно установить при проведении четырехточечного цветотеста. Благодаря этому методу определяют наличие моно-, бинокулярного или одновременного видения.

Перед каждым глазом человека устанавливают разный цветовой фильтр (красный и зеленый). На некотором расстоянии от органов зрения расположен экран с 4 кружками. Каждый из них имеет окраску (белый, красный и 2 зеленых). В зависимости от того, сколько кружков видит пациент, офтальмолог делает вывод о типе зрения. В норме человек различает все 4 фигуры. При этом белый круг для него приобретает красную или зеленую окраску. При монокулярном зрении испытуемый видит лишь 2 или 3 фигуры на экране. В некоторых случаях пациент отмечает 5 кружков. Это встречается редко и характерно для одновременного (как моно-, так и бинокулярного) типа видения. Данное отклонение от нормы не требует лечения.

Почему развивается косоглазие при бинокулярном зрении?

Известно, что в период новорожденности ребенок не обладает бинокулярным зрением. Его формирование начинается в возрасте 1,5-2 месяцев. В это время разобщенное зрение считается нормой. В 3-4 месяца у малыша происходит формирование рефлекса, согласно которому получаемые двумя глазами изображения воспринимаются как единое. Тем не менее процесс формирования бинокулярного зрения заканчивается лишь в 12-летнем возрасте. Исходя из этого, такое заболевание, как косоглазие, относится к детским патологиям. При этом ребенок не может сфокусировать взгляд на определенном предмете. Движения органов зрения могут происходить не одномоментно, один глаз прищуривается и косит при ярком свете. Причина данной патологии – неправильное или запоздалое формирование бинокулярного видения. Это наблюдается при миопии, астигматизме или дальнозоркости.

Бинокулярное зрение при косоглазии: лечение патологии

Для того чтобы сформировать бинокулярное зрение у ребенка, необходимо вовремя диагностировать косоглазие и приступить к лечению. В первую очередь нужно выявить причину патологии. Это требуется, чтобы выбрать способ восстановления бинокулярного зрения. Лечение косоглазия начинают с комплекса упражнений, необходимых для укрепления глазных мышц. Чтобы ребенок правильно выполнял зарядку для зрения, нужен контроль родителей или доктора. В некоторых случаях показано ношение специальных очков. Если у ребенка сформировалась амблиопия, то необходимо увеличить нагрузку на один из органов зрения. Для этого одно из стекол очков (на стороне здорового глаза) заклеивают.

Методы восстановления бинокулярного зрения

Методы лечения бинокулярного зрения можно подразделить на физические и хирургические. В первом случае подразумевается выполнение упражнений для глазных мышц. Их необходимо делать регулярно, несколько раз в день. В некоторых случаях этого метода бывает достаточно. Чаще всего помимо зарядки для глаз требуется ношение очков. Они помогают избавиться от причины косоглазия (миопия, астигматизм, дальнозоркость). Еще один метод лечения бинокулярного лечения – это оперативное вмешательство. Оно применяется в тех случаях, когда коррекция косоглазия другими способами невозможна.

Органы чувств у птиц

Органы чувств.

Из всех органов чувств наиболее развито у птиц зрение: размеры глаз относительно велики, увеличено количество элементов сетчатки. Сильно развиты и зрительные бугры головного мозга. Общее поле зрения у птиц достигает более 300° (поле зрения каждого глаза птицы 150-170°, т. е. на 50° с лишним больше, чем у человека). Птица видит каждым глазом отдельно в отличие от человека, который смотрит на каждый предмет сразу обоими глазами. Однако поле бинокулярного зрения, т. е. площадь совпадения полей зрения обоих глаз, невелико и у многих птиц составляет 20-30° (у человека — 150°). Способность глаза птиц к аккомодации очень велика: у баклана, например, она равна 40-50 диоптриям (у человека 14-15), хотя некоторые виды (куры, голуби) имеют всего 8-12 диоптрий.

На сетчатке глаза, воспринимающей световые раздражения, у очень быстрых летунов (ласточек, крачек) имеется два-три чувствительных пятна (места наиболее острого зрения), где сосредоточено большое число чувствительных клеток, представляющих собою окончания зрительного нерва. Для сравнения отметим, что у человека только одно такое пятно. В связи с этим острота зрения у птиц в 4-5 раз превосходит остроту зрения у человека. Достаточно указать, что сокол-сапсан видит некрупную добычу (горлицу или дрозда) на расстоянии около 1 км. Высокое развитие зрения связано с быстротой перемещения птиц в воздушной среде. Органы зрения имеют большое значение при ориентации их в пространстве.

Глаза.Птицы отличаются превосходным зрением. Например, орел, парящий высоко над лугами, видит мышь, пробегающую в траве. У большинства птиц очень широкое, почти круговое поле зрения. Поэтому птицы видят не только перед собой, но также по сторонам и отчасти позади себя. Глаза у птиц, как и у пресмыкающихся, снабжены тремя веками: верхним, нижним и прозрачным внутренним — мигательной перепонкой.

Три века.У птиц кроме верхнего и нижнего век есть еще и «третье» веко – мигательная перепонка. Это тонкая, прозрачная складка кожи, надвигающаяся на глаз со стороны клюва. Мигательная перепонка увлажняет, очищает и защищает глаз, моментально закрывая его при опасности соприкосновения с внешним предметом.

Монокулярное и бинокулярное зрение

Вдобавок у птицы очень широкое общее поле зрения, поскольку глаза расположены по бокам головы. Этот тип зрения, при котором любой объект в каждый момент времени видим только одним глазом, называется монокулярным. Общее поле монокулярного зрения – до 340 градусов. Бинокулярное зрение, при котором оба глаза обращены вперед, свойственно только совам. Его общее поле у них ограничено примерно 70 градусов. Между монокулярностью и бинокулярностью существуют переходы. У вальдшнепа глаза так далеко сдвинуты назад, что воспринимают заднюю половину поля зрения не хуже, чем переднюю. Эта позволяет ему следить за тем, что делается над головой, зондируя грунт клювом в поисках земляных червей.

Острота зрения.Американским исследователям удалось определить остроту зрения пустельги (Cerchneis), птицы из семейства соколиных (Falconidae). Ее зрение оказалось в 2,6 раза острее человеческого. Если бы человек обладал таким зрением, он был бы способен прочитать всю таблицу для определения остроты зрения на расстоянии около 90 м.

Читайте также:  Какие стекла для очков для зрения

Величина глаза у страуса больше, чем его мозг.

Сова — единственная птица, моргающая с открытыми глазами.

У некоторых птиц (утки, кулики, питающиеся падалью хищники и др.) обоняние хорошо развито и используется при поиске корма. У других птиц развито слабо.

Слух у птиц очень тонкий. Они улавливают даже слабые звуки, предупреждающие об опасности. Многие ночные хищники ловят добычу в темноте на слух. Хотя птицы слышат звуки в достаточно широком частотном диапазоне, они особенно чувствительны к акустическим сигналам особей своего вида. Как показали эксперименты, различные виды воспринимают частоты от 40 Гц (волнистый попугайчик) до 29 000 Гц (зяблик), однако обычно верхний предел слышимости не превышает у пернатых 20 000 Гц. У голубя верхний предел слуха — 12 000 Гц, обыкновенной неясыти — 21 000, курицы — 38 000. певчих птиц — 20 000 гц.

Эхолокация

Несколько видов птиц, гнездящихся в темных пещерах, избегают там ударов о препятствия благодаря эхолокации. Эта способность наблюдается, например, у гуахаро (Steatornis caripensis) с Тринидада и севера Южной Америки. Летая в абсолютной темноте, он испускает «очереди» высоких звуков и, воспринимая их отражение от стен пещеры, легко в ней ориентируется.

В знаменитой пещере Гуахаро, описанной еще Гумбольдтом, гнездится около 300000 гуахаро Они вылетают наружу только по ночам, а для ориентации в темноте пользуются эхолокацией. Их сонары менее совершенны, чем у летучих мышей и дельфинов. Они работают на относительно низких частотах, а именно в интервале от 1500 до 2500 Гц Поэтому гуахаро не замечают в темноте объектов, имеющих небольшие размеры. В пещерах гуахаро очень шумно. Еще на входе слышишь оркестр птичьих криков и громких локационных щелчков. Птицы издают зловещие пронзительные крики, напоминающие плач и стоны, трудно переносимые для непривычного уха.

Эхолокацией пользуются и стрижи-саланганы, обитающие в Индонезии и на островах Тихого океана. У разных видов салангов сонары работают на разных частотах: 2000 до 7000 Гц. Любопытно, что когда птица сидит, её эхолокационный аппарат не работает; локационные импульсы посылаются только в полете (при взмахивании крыльями). Не работает сонар саланганов и на свету. Охотятся саланганы только 40 минут в день

Биология и медицина

Птицы: орган зрения

Зрение — основной рецептор дальней и ближней ориентации птиц. В отличие от других позвоночных среди них нет ни одного вида с редуцированными глазами. Глаза очень велики по относительным и абсолютным размерам: у крупных хищников и сов по объему они равны глазу взрослого человека. Увеличение абсолютных размеров глаз выгодно потому, что позволяет получить большие размеры изображения на сетчатке и тем самым яснее различить его детали. Относительные размеры глаз, отличающиеся у разных видов, связаны с характером пищевой специализации и способами охоты. У преимущественно растительноядных гусей и куриных глаза по массе примерно равны массе головного мозга и составляют 0,4- 0,6% от массы тела, у ловящих подвижную добычу и высматривающих ее на больших расстояниях хищных птиц масса глаз в 2-3 раза превышает массу мозга и составляет 0,5-3% от массы тела, у активных в сумерках и ночью сов масса глаз равна 1-5% массы тела ( Никитенко М.Ф. ).

У разных видов на 1 мм2 сетчатки находится от 50 тыс. до 300 тыс. фоторецепторов — палочек и колбочек, а в области острого зрения — до 500 тыс. — 1 млн. При разном сочетании палочек и колбочек это позволяет либо различать многие детали объекта, либо его контуры при низкой освещенности. Основной анализ зрительных восприятий проводится в зрительных центрах головного мозга; ганглиозные клетки сетчатки реагируют на несколько стимулов: контуры, цветовые пятна, направления перемещений и т. д. У птиц, как и остальных позвоночных, на сетчатке есть участок наиболее острого зрения с углублением (ямкой) в его центре.

У некоторых видов, питающихся преимущественно подвижными объектами, есть две области острого зрения: у дневных хищников, цапель, зимородков, ласточек; у стрижей лишь одна область острого зрения, и поэтому их способы ловли добычи на лету менее разнообразны, чем у ласточек. В колбочках находятся масляные капли — цветные (красные, оранжевые, голубые и др.) или бесцветные. Вероятно, они выполняют роль светофильтров, повышающих контрастность изображения. Очень подвижный зрачок предотвращает излишнюю засветку сетчатки (при быстрых поворотах в полете и т. п.).

Аккомодация (наводка глаза на резкость) осуществляется изменением формы хрусталика и его одновременным перемещением, а также некоторым изменением кривизны роговицы. В области слепого пятна (места вхождения зрительного нерва) расположен гребень — богатое сосудами складчатое образование, вдающееся в стекловидное тело ( рис. 60, 13 ). Основная его функция — снабжение стекловидного тела и внутренних слоев сетчатки кислородом и удаление продуктов метаболизма Гребень есть и в глазах пресмыкающихся, но у птиц, видимо, в связи с большими размерами глаз, он значительно крупнее и сложнее. Механическая прочность крупных глаз птиц обеспечивается утолщением склеры и появлением в ней костных пластинок. Хорошо развиты подвижные веки, у некоторых птиц несущие ресницы. Развита мигательная перепонка ( третье веко ), двигающаяся, непосредственно по поверхности роговицы, очищая ее.

У большинства птиц глаза расположены по бокам головы. Поле зрения каждого глаза составляет 150-170*, но поле бинокулярного зрения невелико и составляет у многих птиц лишь 20-30*. У сов и некоторых хищных птиц глаза смещаются к клюву и поле бинокулярного зрения возрастает. У некоторых видов с выпуклыми глазами и узкой головой (некоторые кулики, утки и др.) общее поле зрения может быть 360*, при этом узкие (5-10*) поля бинокулярного зрения образуются перед клювом (облегчает схватывание добычи) и в области затылка (позволяет оценивать расстояние до приближающегося сзади врага). У птиц с двумя областями острого зрения они обычно расположены так, что одна из них проецируется в область бинокулярного зрения, а другая — в область монокулярного зрения ( рис. 61 ).

Все птицы обладают цветным зрением , распознавая не только основные цвета, но и их оттенки и сочетания. Поэтому в оперении птиц так часто встречаются яркие цветные пятна, выполняющие функцию видовых меток. Острота зрения птиц, видимо, превосходит в несколько раз остроту зрения человека. Например, сокол сапсан видит двигающуюся добычу размером с галку на расстоянии около 1 км. Птицы различают не только перемещения предметов и их контуры, но и детали формы и окраски, рисунок и фактуру поверхностей. Поэтому зрительные восприятия используются птицами и для получения разнообразной информации об окружающем мире, и как важное средство при внутривидовом и межвидовом общении.

Строение глаз птиц.

Основные структуры глаза птицы сходны со структурами глаз других позвоночных. Наружный слой глаза спереди состоит из прозрачной роговицы и двух слоёв склеры — жёсткого слоя коллагеновых волокон. Внутри глаз разделён хрусталиком на два основных сегмента: передний и задний. Передняя камера заполнена водянистой влагой, а в задней камере содержится стекловидное тело.

Хрусталик представляет собой прозрачное двояковыпуклое тело с жёстким наружным и мягким внутренним слоями. Он фокусирует свет на сетчатке. Форма хрусталика может быть изменена цилиарными мышцами, которые непосредственно прикреплены к нему посредством зонулярных волокон. Помимо этих мышц, у некоторых птиц есть также дополнительные мышцы Крэмптона, которые могут менять форму роговицы, тем самым обеспечивая более широкий диапазон аккомодации, чем у млекопитающих. Такая аккомодация у ныряющих водоплавающих птиц может быть очень быстрой. Радужная оболочка — это цветная мышечная диафрагма перед хрусталиком, которая регулирует количество света, попадающего в глаз. В центре радужки находится зрачок — изменяющееся круглое отверстие, через которое свет попадает в глаз.

Сетчатка — относительно гладкая изогнутая многослойная структура, содержащая фоточувствительные клетки палочки и колбочки с соответствующими нейронами и кровеносными сосудами. Плотность фоторецепторов имеет важное значение в определении максимально достижимой остроты зрения. У людей имеется около 200 000 рецепторов на мм2, у домового воробья их 400 000, а у обыкновенного канюка (хищной птицы) — 1,000,000. Не все фоторецепторы имеют индивидуальное соединение со зрительномым нервом, зрительное разрешение в большей степени определяется соотношением нервных ганглиев к рецепторам. У птиц этот показатель очень высок: у белой трясогузки приходится от 100 000 ганглиозных клеток на 120 000 фоторецепторов.

Палочки более чувствительны к свету, но не дают информации о цвете, в то время как менее светочувствительные колбочки обеспечивают цветное зрение. У дневных птиц 80% рецепторов могут составлять колбочки (до 90% у некоторых стрижей), тогда как у ночных сов фоторецепторы представлены почти исключительно палочками. У птиц, как и у других позвоночных, за исключением плацентарных млекопитающих, колбочки бывают двойными. У некоторых видов подобные двойные колбочки могут составлять до 50% от всех рецепторов подобного типа.

Анализ зрительного восприятия проводится в зрительных центрах головного мозга. Ганглиозные клетки сетчатки реагируют на несколько стимулов: контуры, цветовые пятна, направления перемещений и т.д. У птиц, как и у остальных позвоночных, на сетчатке есть участок наиболее острого зрения с углублением в его центре (макула).

В области слепого пятна (места вхождения зрительного нерва) расположен гребень — богатое сосудами складчатое образование, вдающееся в стекловидное тело. Основные его функции — снабжение стекловидного тела и внутренних слоев сетчатки кислородом, а также удаление продуктов метаболизма. Гребень есть и в глазах пресмыкающихся, но у птиц он крупнее и устроен сложнее. Механическая прочность глаз птиц обеспечивается утолщением склеры и появлением в ней костных пластинок. У многих птиц хорошо развиты подвижные веки и развита мигательная перепонка (третье веко), двигающаяся непосредственно по поверхности роговицы, очищая ее.

У большинства птиц глаза расположены по бокам головы. Поле зрения каждого из глаз составляет 150-170 градусов. Поле бинокулярного зрения довольно мало и составляет у многих птиц лишь 20-30 градусов. У некоторых хищных птиц (например, сов) глаза смещаются к клюву, что увеличивает поле бинокулярного зрения. У некоторых видов с выпуклыми глазами и узкой головой (некоторые кулики, утки и др.) общее поле зрения может составлять 360 градусов, при этом узкие (5-10 градусов) поля бинокулярного зрения образуются перед клювом (это облегчает схватывание добычи) и в области затылка (это позволяет оценивать расстояние до приближающегося сзади врага). У птиц с двумя областями острого зрения они обычно расположены так, что одна из них проецируется в область бинокулярного зрения, а другая — в область монокулярного зрения.

Все птицы обладают прекрасным цветным зрением, распознавая не только основные цвета, но и их оттенки и сочетания. Поэтому в оперении птиц так часто встречаются яркие цветовые пятна, выполняющие функции видовых меток. Птицы различают не только перемещения предметов и их контуры, но и детали формы, окраски, рисунок, фактуры поверхностей. Именно поэтому зрительное восприятие и используется птицами и для получения разнообразной информации об окружающем мире, и как важное средство при внутривидовом и межвидовом общении.

Птицы редко смотрят наверх, т.к. им важнее видеть всё происходящее на земле. Устройство глаз птицы отражает верность данного утверждения. Верхний сегмент сетчатки глаз птиц видит лучше (видит землю), а нижний сегмент видит хуже (хрусталик строит перевёрнутое изображение). Некоторые птицы хорошо видят как в воздухе, так и в воде (например, баклан). Это предполагает возможность аккомодации (изменения преломляющей силы оптической системы глаза). Баклан обладает способностью менять эту характеристику на 4000 диоптрий.

Читайте также:  Совесть с точки зрения этики это

Восприятие контраста.

Контрастность определяется как разница в яркости между двумя цветами, разделенная на сумму их яркости. Контрастная чувствительность представляет собой обратное наименьшему контрасту, который можно обнаружить. Например, контрастная чувствительность, равная 100, означает, что наименьший контраст, который можно увидеть, равен 1%. У птиц сравнительно низкая контрастная чувствительность по сравнению с млекопитающими. Люди могут увидеть контрасты 0,5—1%, в то время как большинству птиц для получения реакции необходимо 10% контраста. Функция контрастной чувствительности описывает способность животных обнаруживать контраст моделей различной пространственной частоты.

Восприятие движения.

Птицы видят быстрые движения лучше людей, для которых мелькание со скоростью больше 50 Гц воспринимается как непрерывное движение. Поэтому человек не может различить отдельные вспышки люминесцентной лампы, колеблющейся с частотой 50 Гц. Ястреб способен стремительно преследовать добычу сквозь лес, избегая ветвей и других препятствий на высокой скорости; для человека такая погоня будет выглядеть как в тумане.

Кроме того, птицы способны обнаружить медленно движущиеся объекты. Движение солнца и звёзд по небу незаметны для человека, но очевидны для птиц. Эта способность позволяет перелётным птицам ориентироваться во время миграций.

Для получения чёткого изображения во время полета птицы удерживают голову в максимально стабильном положении, компенсируя внешние колебания. Эта способность особенно важна для хищных птиц.

Восприятие магнитного поля.

Считается, что восприятие магнитного поля перёлетными птицами зависит от света. Птицы поворачивают голову, чтобы определить направление магнитного поля. На основании исследований нейронных путей было сделано предположение, что птицы способны видеть магнитное поле. Правый глаз перелётной птицы содержит cветочувствительные белки криптохромы. Свет возбуждает эти молекулы, которые выпускают непарные электроны, взаимодействующие с магнитным полем Земли, обеспечивая информацию о направлении.

Поделиться в социальных сетях:

Ваше имя:

Разрешены только русские или английские буквы + пробел.

Ваш email:

Содержимое этого поля является приватным и не будет отображаться публично.

Ваш комментарий:
HTML теги и ругательства запрещены. Максимальная длина сообщения 600 символов.

Символьная ASCII CAPTCHA: Обновить

Введите 6 цифр на картинке выше.

Этот вопрос задается для того, чтобы выяснить, являетесь ли Вы человеком или представляете из себя автоматическую спам-рассылку.

Основная причина появления ячменя (гордеолум) на глазу — это закупорка протока сальной железы и последующее её воспаление. Довольно часто гнойно-воспалительный процесс распространяется внутрь волосяной луковицы ресницы, дольку мейбомиевой железы. В этом случае развивается внутренний ячмень.
Читать далее.

Фасеточное зрение – это тип зрения, присущий всем насекомым, ракообразным и некоторым другим беспозвоночным, который характеризуется наличием фасеточных глаз. Фасеточные глаза имеют очень сложное строение и состоят из мелких структурных единиц.
Читать далее.

Ещё 10−15 лет назад очки носил один, максимум 2−3 ребёнка в классе. Проблемы со зрением были скорее исключением, чем правилом. Каждый год число детей с нарушениями зрения растёт. Школьные учителя даже испытывают трудности при рассадке классов, так как многим детям нужно сидеть на первой-второй парте среднего ряда.
Читать далее.

Это метод детального зрительного исследования тканей живого глаза. Метод позволет исследовать передний и задний отделы глазного яблока при различных освещении и величине изображения. Исследование проводят с помощью .
Читать далее.

Глазное яблоко у детей имеет анатомические и физиологические особенности по сравнению с глазами взрослых. В данной статье мы рассмотрим основные характеристики, касающиеся строения глазного яблока у детей. Размер глазного яблока у здорового.
Читать далее.

Информация о графике работы и телефонах всех взрослых и детских больниц города Минска республики Беларусь.
Читать далее.

Мир глазами животных

Мы видим мир вокруг и, нам кажется, что он именно такой. Сложно даже представить, что кто — то видит его по-другому, в черно — белых тонах, или без синего и красного. Сложно поверить, что для кого — то наш привычный мир совсем другой.

Но это именно так.

Давайте посмотрим на окружающий мир глазами животных, разберемся, как животные видят, в каких цветах они воспринимают мир.

Итак, для начала разберем, что такое зрение и какие функциональные способности оно включает.

Что такое зрение?

Зрение — процесс обработки изображения объектов окружающего мира.

  • осуществляется зрительной системой
  • позволяет получать представление о величине, форме и цвете предметов, их взаимном расположении и расстоянии между ними

Зрительный процесс включает:

  • проникновение светового потока через преломляющие среды глаза
  • фокусировка света на сетчатке
  • трансформация световой энергии в нервный импульс
  • передача нервного импульса от сетчатки в головной мозг
  • обработка информации с формированием увиденного образа
  • светоощущение
  • восприятие движущих объектов
  • поля зрения
  • острота зрения
  • цветовое восприятие

Светоощущение — способность глаза воспринимать свет и определять различную степень его яркости.

В глазу содержатся два типа светочувствительных клеток (рецепторов): высокочувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.

Процесс приспособления глаза к различным условиям освещения называется адаптацией. Различают два вида адаптации:

  • к темноте — при понижении уровня освещенности
  • и к свету — при повышении уровня освещенности

Светоощущение является основой всех форм зрительного ощущения и восприятия, особенно в темноте. На светоощущение глаза также влияют такие факторы как:

  • распределение палочек и колбочек (у животных центральный участок сетчатки в25 ° состоит, преимущественно, из палочек, что улучшает ночное восприятие)
  • концентрация светочувствительных зрительных веществ в палочках (у собак чувствительность к свету палочек 500-510нм, у человека 400нм)
  • наличие тапетума (tapetum lucidum) — особый слой сосудистой оболочки глаза (тапетум направляет назад прошедшие на сетчатку фотоны, заставляя их ещё раз воздействовать на рецепторные клетки, повышая светочувствительность глаза, что в условиях малого освещения такая оказывается весьма ценно) у кошек глаз отражает в 130 раз больше света, чем у человека (Paul E. Miller, DVM, and Christopher J. Murphy DVM, PhD )
  • форма зрачка — форма, размер и положение зрачка у различных животных (зрачок бывает круглый, щелевидный, прямоугольный, вертикальный, горизонтальный)
  • форма зрачка может рассказать относится ли животное к хищникам или жертвам (у хищников зрачок сужается в вертикальную полоску, у жертв в горизонтальную — эту закономерность ученые обнаружили, сравнив формы зрачков у 214 видов животных)

Итак, какие бывают формы зрачков:

  • Щелевидный зрачок — (у хищных животных, таких как домашние кошки, крокодилы, ящерицы гекконы, змеи, акула) позволяет точнее подстроить глаз под количество света вокруг, так, чтобы и в темноте видеть, и на полуденном солнце не ослепнуть
  • Круглый зрачок- (у волков, собак, больших кошек — львов, тигров, гепардов, леопардов, ягуаров; птиц) т.к. они избавлены от необходимости хорошо видеть в темноте
  • Горизонтальный зрачок (травоядные) позволяет глазу хорошо видеть, что происходит у земли и охватывает довольно широкую панораму глаз защищён от прямого попадания солнечных лучей сверху, которые могли бы ослепить животное

Как животные воспринимают движущие объекты?

Восприятие движения имеет жизненно важное значение, т.к. движущиеся объекты являются сигналами либо опасности, либо потенциальной пищи и требуют быстрого соответствующего действия, в то время как неподвижные объекты могут быть игнорированы.

Например, собаки могут распознать движущиеся объекты (благодаря большому количеству палочек) на расстоянии 810 до 900 м, а неподвижные объекты только на расстоянии 585 м.

Как животные реагируют на мелькающий свет (например, в телевизоре)?

Реакция на мелькающий свет дает представление о функции палочек и колбочек.

Человеческий глаз способен улавливать колебания 55 герц, а собачий глаз улавливает колебания на частоте 75 герц. Поэтому, в отличие от нас, собаки, скорее всего, видят лишь мерцание и большая часть из них на изображение в телевизоре не обращают внимание. Изображения предметов в обоих глазах проецируются на сетчатке и передаются в кору головного мозга, где происходит их слияние в одно изображение.

Какие у животных поля зрения?

Поле зрения — пространство, воспринимаемое глазом при неподвижном взгляде. Можно выделить два основных типа зрения:

  • бинокулярное зрение — восприятие окружающих предметов двумя глазами
  • монокулярное зрение — восприятие окружающих предметов одним глазом

Бинокулярное зрение имеется далеко не у всех видов животных и зависит от строения и взаиморасположения глаз на голове. Бинокулярное зрение позволяет совершать тонкие координированные движения передними конечностями, прыжки, легко передвигаться.

Хищникам бинокулярное восприятие объектов охоты помогает правильно оценить расстояние до намеченной жертвы и выбрать оптимальную траекторию нападения. У собак, волков, койотов, лисиц, шакалов угол бинокулярного поля равен 60-75°, у медведей 80-85°. У кошек 140°(зрительные оси обоих глаз почти параллельны).

Монокулярное зрение с большим полем позволяет потенциальным жертвам (сурки, суслики, зайцы, копытные и т. п.) вовремя заметить опасность. достигает у грызунов 360°, у копытных 300-350°, у птиц достигает более 300°. Хамелеоны и морские коньки умеют смотреть сразу в двух направлениях, т.к. их глаза двигаются независимо друг от друга.

Острота зрения

  • способность глаза воспринимать две точки, расположенные на минимальном расстоянии друг от друга, как отдельные
  • минимальное расстояние, при котором две точки будут видны раздельно, зависит от анатомо-физиологических свойств сетчатки

От чего зависит острота зрения?

  • от размеров колбочек, рефракции глаза, ширины зрачка, прозрачности роговицы, хрусталика и стекловидного тела (составляют светопреломляющий аппарат), состояния сетчатой оболочки и зрительного нерва, возраста
  • диаметр колбочки определяет величину максимальной остроты зрения (чем меньше диаметр колбочек, тем больше острота зрения)

Угол зрения -универсальная основа для выражения остроты зрения. Предел чувствительности глаза большинства людей в норме равен 1. У человека для определения остроты зрения используют таблицу Головина-Сивцева, содержащую буквы, цифры или знаки различной величины. У животных остроту зрения определяют с помощью (Ofri ., 2012):

  • поведенческого теста
  • электроретинографии

Острота зрения собак оценивается в 20-40% от остроты зрения людей, т.е. собака узнает объект с 6 метров, тогда как человек — с 27 м.

Почему собака не обладает остротой зрения человека?

У собак, как и у всех других млекопитающих, за исключением обезьяны и человека, отсутствует центральная ямка сетчатки (область максимальной остроты зрения). Большинство собак слегка дальнозорки (гиперметропия: +0,5 Д), т.е. они могут различать мелкие предметы или их детали на расстоянии не ближе 50-33 см; все предметы, расположенные ближе, кажутся расплывчатыми, в кругах рассеивания. Кошки близоруки, то есть они не видят дальние объекты также хорошо. Способность хорошо видеть вблизи больше подходит для охоты на добычу. Лошадь имеет невысокую остроту зрения и относительно близорука. Хорьки близоруки, что является, без сомнения, реакцией на их адаптацию к норному образу жизни и поиску добычи по запаху. Близорукое зрение хорьков является таким же острым как и наше и, может быть, даже немного острее.

орел 20/5 Reymond
сокол 20/8 Reymond
человек 20/20 Ravikumar
лошадь 20/30–20/60 Timney
голубь 20/50 Rounsley
собака 20/50–20/140 Odom
кошка 20/100–20/180 Belleville
кролик 20/200 Belleville
корова 20/460 Rehkamper
слон 20/960 Shyan-Norwalt
мышь 20/1200 Gianfranceschi

Таким образом,самое острое зрение у орла, затем в порядке убывания: сокол, человек, лошадь, голубь, собака,кошка,кролик,корова, слон,мышь.

Цветовое зрение

Цветовое зрение — это восприятие цветового многообразия окружающего мира. Вся световая часть электромагнитных волн создает цветовую гамму с постепенным переходом от красного до фиолетового (цветовой спектр). Осуществляется цветовое зрение колбочками. В сетчатке глаза человека есть три вида колбочек:

  • первый воспринимает длинноволновые цвета – красный и оранжевый
  • второй тип лучше воспринимает средневолновые цвета – жёлтый и зелёный
  • третий тип колбочек отвечает за коротковолновые цвета – синий и фиолетовый
Читайте также:  Как отстоять свою точку зрения перед начальником

Трихромазия — восприятие всех трех цветов
Дихромазия — восприятие только двух цветов
Монохромазия — восприятие только одного цвета

Орган зрения у эмбриона птицы

Зрение является наиболее развитым органом чувств у птиц. Глаз представляет собой шаровидное образование, покрытое многими оболочками.

Снаружи внутрь (кроме передней части глаза) расположены следующие оболочки: склера, сосудистая, пигментная и сетчатка. Спереди склера продолжается прозрачной роговицей, а сосудистая — ресничным телом и радужной оболочкой. Под влиянием сокращения мышц радужной оболочки отверстие в ней — зрачок — изменяется в размере. Непосредственно за радужной оболочкой лежит хрусталик, а между ним и роговицей находится маленькая, заполненная жидкостью, передняя камера глаза. Сзади радужной оболочки и хрусталика глазной бокал заполнен студнеобразным стекловидным телом.

Наиболее резкое различие глаза птиц от глаза млекопитающих — это отсутствие кровеносных сосудов сетчатки; но вместо этого в глазе птиц имеется специальная сосудистая структура, выступающая в стекловидное тело — гребень. Другое отличие — это наличие в сетчатке у птиц двух или даже трех ямок (fovea) — участков более острого зрения. Эти участки особенно развиты у хищных птиц. Мышцы ресничного тела и радужной оболочки поперечнополосатые, а у млекопитающих гладкие. Склера у птиц и рептилий в своей передней части усилена костными пластинками. Большинство этих отличий представляет адаптацию к зрению во время полета и прямо или косвенно обусловливает более острое зрение птиц по сравнению с млекопитающими. Вследствие этого птиц называют Augentiere. В связи с тем что у птиц каждый глаз связан лишь с одной стороной мозга (полный перекрест нервов), зрительные восприятия каждого глаза являются независимыми и бинокулярное зрение у птиц имеет меньшее значение, чем монокулярное.

Развитие глаза протекает в темноте; глаз как бы защищен от преждевременного включения функции. Глазные пузырьки, возникшие как выпячивания промежуточного мозга, превращаются в настоящие пузырьки с пережатием у основания к 40—45 час. инкубации. С 50—55 час. происходит значительное продвижение в развитии глаза. Глазные пузырьки начинают выпячиваться, образуя двухстенную чашу, а полый стебелек, связывающий их с мозгом, становится все более узким. Внутренний слой глазной чаши (первоначально наружная стенка глазного пузырька) — зачаток сетчатки становится толще, чем наружный, который является зачатком пигментного слоя, радужной оболочки и ресничного тела. Глазная чаша имеет отверстие, обращенное наружу и вниз. Наружная часть становится зрачком, а нижняя, впоследствии закрывающаяся, называется хороидальной, или зародышевой, щелью. Закрытие ее тесно связано с развитием гребня.

Хрусталик возникает отдельно от глазного пузырька в виде утолщения поверхностной эктодермы у 40-часового куриного эмбриона. Затем происходит инвагинация этого утолщения, и у 62—74-часовых эмбрионов хрусталиковый пузырек отделяется от поверхностной эктодермы. Стенки хрусталикового пузырька утолщаются, и полость его исчезает. Клетки хрусталика перестают делиться, удлиняются, ядра в них исчезают и становятся волокновидными. Хрусталик вылупившегося цыпленка содержит более 500 слоев волокон, а процесс их образования продолжается и после вылупления. Преципитиновый тест показал наличие протеинов взрослого хрусталика в хрусталиковом пузырьке 60-часового эмбриона. Следовательно, химическая дифференциация хрусталика предшествует морфологической. Капсула хрусталика (сумка) — это, по-видимому, продукт деятельности его клеток. К ней прикрепляются цинновы связки, отходящие от ресничного тела. У 4-дневного эмбриона верхние края глазной чаши сходятся по бокам хрусталика.

Основной частью глаза, воспринимающей зрительные изображения, является сетчатка, располагающаяся между пигментным эпителием и стекловидным телом. Сетчатка состоит из 5 слоев: ганглиозного, внутреннего сетчатого, внутреннего ядерного, наружного сетчатого и наружного ядерного. Свет, проходя сквозь роговицу, зрачок, хрусталик, стекловидное тело и сетчатку, отражается от пигментного слоя. К нему направлены отростки зрительных клеток (ядра их расположены в наружном ядерном слое), воспринимающие свет: палочки (черно-белое) и колбочки (цветное изображение). У дневных птиц в сетчатке преобладают колбочки, у ночных — палочки. Вызванное светом раздражение передается через аксоны зрительных клеток на синапсы дендритов биполярных нейронов (ядра которых расположены во внутреннем ядерном слое), причем один биполярный нейрон объединяет до 30 зрительных клеток. Аксоны же биполяров образуют синапсы с дендритами ганглиозных клеток, аксоны которых растут вдоль борозды в стенке глазного стебелька по направлению к головному мозгу и образуют зрительный нерв.

Ямка сетчатки (участок острого зрения) появляется в центре маленькой утолщенной площадки, которая, по-видимому, является результатом более хорошего кровоснабжения вследствие раннего утолщения сосудистой оболочки в этом участке. Ямка образуется в результате радиальной миграции клеток от центра площадки. В области ямки имеется наибольшее скопление колбочек и палочек. У птиц, вылупляющихся с закрытыми глазами, утолщенная площадка и ямка в ней не начинают развиваться до момента вылупления, а наиболее быстрая дифференциация ямки происходит после открытия глаз. Сетчатка птиц значительно толще, чем у других животных, элементы ее более четко организованы, а различные чувствительные слои более резко отграничены. У разных видов птиц имеются различия в структуре сетчатки — в основном это различное соотношение палочек и колбочек и положение и глубина ямок, участков острого зрения. В гистологическом развитии сетчатки куриного эмбриона можно различить три периода:

1) размножение клеток со 2-го по 8-й день; 2) клеточная перегруппировка с 8-го по 10-й; 3) окончательная дифференциация после 10-го дня инкубации. Нейробласты и нервные волокна имеются в сетчатке уже к концу 3-го дня. Палочки и колбочки начинают дифференцироваться на 10—12-й день. Палочки и колбочки в сетчатке куриного эмбриона достигают к концу инкубации той стадии развития, которая наблюдается у домашнего воробья только через несколько дней после вылупления. Говардовский и Харкеевич показали, что у 10-дневного куриного эмбриона будущие зрительные клетки имеют цилиндрическую форму и плотно прикреплены к пигментному эпителию, что, по-видимому, играет большую роль в снабжении фоторецепторных клеток витамином А из пигментного эпителия. Витамин А необходим для построения молекул зрительного пигмента — родопсина — и тех мембранных структур, в которых он локализуется. На 18—19-й день инкубации структура рецепторной клетки усложняется в связи с включением в нее родопсина.

Приведем несколько работ по гистохимии развития сетчатки куриного эмбриона. Содержание ацетилхолина и холинэстеразная активность в сетчатке увеличивается равномерно с 8-го до 19-го дня развития куриного эмбриона, а затем резко возрастает. Активность щелочной фосфатазы тоже внезапно увеличивается между 17-м и 19-м днями. По-видимому, нервные элемены сетчатки созревают к 19-му дню и способны проводить импульсы, так как рефлекс сужения зрачка может быть впервые вызвап именно в это время. Сотрудниками Винникова показано, что: 1) витамин А участвует в регуляции выхода ионов на свету и в темноте и обусловливает состояние общего возбуждения рецептора; 2) в сетчатке имеется сукциноксидазная и цитохромоксидазная активность, указывающая, по-видимому, на транспорт электронов и регенерацию АТФ; 3) активность окислительных энзимов в митохондриях фоторецепторов, как правило, повышается на свету и падает в темноте; при освещении митохондрии палочек набухают, а митохондрии колбочек не изменяются.

Гребень глаза сильно варьирует в размере и форме у различных видов птиц. Это тонкая, темнопигментированная пластинка, складывающаяся веером и выступающая в стекловидное тело с вентральной поверхности глаза. Гребень может иметь от 5 до 30 складок и быть коротким или длинным, достигая хрусталика. Он состоит главным образом из сосудистой сети, поддержанной пигментированной соединительной тканью (клетки глии). На 6-й день развития куриного эмбриона гребень выдается в стекловидное тело в виде низкого гребешка вдоль линии слияния стенок хороидальной щели. Пигмент появляется в нем после 8 дней, а складки начинают образовываться на 9—10-й день инкубации. У взрослых птиц гребень целиком пронизан капиллярами, а в основании его лежат артерии и вена. Возможно, что гребень, кроме снабжения сетчатки питательными веществами, обеспечивает и защиту ее от сильного света. Кроме того, в обзоре Дементьева указывается, что гребень играет роль в питании стекловидного тела и, возможно, служит для согревания глаза и для увеличения остроты зрительных восприятий.

Обращенные вперед края глазной чаши образуют к 8—9-му дню радужную оболочку, а мышечные волокна начинают появляться в ней с 7-го дня. Мышцы радужной оболочки: сфинктерная (для сокращения зрачка) и радиальная (для его расширения) поперечнополосатые, что обусловливает произвольное сокращение зрачка (особенно проявляется у хищных птиц). Сфинктерная мышца появляется на 8—9-й день, а радиальная — на 13—19-й день. Цвет радужной оболочки обусловлен пигментными клетками, пигментными тельцами и цветовыми жировыми каплями.

Складки ресничного тела (от 85 до 150 у взрослых экземпляров разных видов птиц), расположенного в центре радужной оболочки расходятся радиально от хрусталика по меридианам глаза. Ресничные отростки (центральные окончания складок) выходят за границу радужной оболочки, а связки (цинновы), отходящие от желобков между ними, прикрепляются к хрусталиковой сумке. Первые ресничные отростки появляются на 6—9-й день развития куриного эмбриона и состоят вначале из направленных к хрусталику выростов мезенхимы. У 16—17-дневного куриного эмбриона их уже около 90. Ресничное тело секретирует жидкость передней камеры глаза, благодаря которой осуществляется диффузное питание хрусталика и роговицы и регулируется внутриглазное давление.

Зачаточная ресничная мышца появляется на 8-й день в виде пучка миобластов; ее поперечная волосатость впервые видна у 11-дневного эмбриона. Сокращение ресничной мышцы, действуя на склеру, сокращает экваториальный диаметр глазного яблока, увеличивает внутриглазное давление и толкает хрусталик и переднюю часть глаза вперед, для близкого видения. По другой теории, ресничная мышца действует на роговицу, которая косвенно изменяет напряжение связки гребня и изменяет форму хрусталика. Дементьев считает, что аккоммодация глаза у птиц происходит всеми тремя способами: изменением формы хрусталика, формы роговицы и расстояния между роговицей и хрусталиком.

Эпителий роговицы (конъюктива) происходит из эктодермы, но подстилающая его часть роговицы происходит из мезенхимы. Роговица осуществляет две функции: грубой фокусировки глаза и защитных очков. Та часть глаза куриного эмбриона, где будет образовываться стекловидное тело, на 4-й день развития Состоит из волокнистой сетки неопределенного строения.

Сосудистая оболочка и склера возникают из мезенхимы, которая облекает глазную чашу в течение эмбрионального развития и участвует также в образовании ресничного тела и роговицы. Сосудистая оболочка осуществляет питание глаза. Раннее развитие сосудистой оболочки состоит в конденсации мезенхимы, соприкасающейся с наружным слоем глазной чаши, что заметно уже у 5-дневного эмбриона. Далее — на 13—14-й день — размер капиллярной сети сосудистой оболочки увеличивается, а затем снаружи его появляется слой более крупных сосудов; пигментация ткани начинается на 8-й день. У внутренней поверхности сосудистой оболочки имеется так называемое «зеркальце» (tapetum lucidum), отражающее свет и раздражающее своим отблеском сетчатку, что позволяет ей улавливать зрительные впечатления при слабом освещении. Развитие склеры начинается одновременно с сосудистой оболочкой, а на 9-й день уже могут быть различимы в ней ранние белковые косточки.

На 7-й день развития куриного эмбриона спереди глазного яблока образуется покровная круговая складка с отверстием в центре, которая превращается в дальнейшем в нижнее и верхнее веки. Внутри нее одновременно образуется полукруглая складка со стороны клюва — мигательная перепонка, или третье веко. У куриного эмбриона веки сомкнуты до 18-го дня инкубации, а у некоторых птенцовых птиц (воробьиные, дятлы, кукушки и др.) веки открываются только через несколько дней после вылупления.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источники:
  • http://fb.ru/article/252566/chem-otlichaetsya-monokulyarnoe-zrenie-ot-binokulyarnogo
  • http://zooeco.com/int/int-pt2-1.html
  • http://medbiol.ru/medbiol/ptyci/00030674.htm
  • http://isee.by/sections/other/birds_eyes.html
  • http://oculusvet.ru/article/mir-glazami-zhivotnykh/
  • http://www.activestudy.info/organ-zreniya-u-embriona-pticy/