Меню Рубрики

Атом с точки зрения квантовой механики

Атомы, как известно, состоят из тяжелого положительно заряженного ядра и легких отрицательно заряженных электронов и фактически представляют собой квантовую систему. В связи с этим для описания строения электронных оболочек атома и их поведения во внешних электрических и магнитных полях, при поглощении и излучении электромагнитной энергии, при взаимодействии с другими материальными объектами используются законы квантовой механики. Найти возможные значения энергии электронов и их пространственное распределение в атоме удается с помощью уравнения Шрёдингера.

Простейшим атомом для решения квантово-механической задачи является атом водорода, так как он содержит всего один электрон. Решения уравнения Шрёдингера (волновые функции) для атома водорода не удается выразить через элементарные математические функции, поэтому эти решения будем характеризовать качественно. Выражение для возможных значений энергии электрона в атоме водорода имеет простой и наглядный вид

где E n – энергия электрона на n-м уровне; e – заряд электрона по модулю; m – масса электрона; п = 1, 2, 3, 4, … – главное квантовое число.

Из анализа выражения для энергии электрона следует, что энергия квантована, она может принимать лишь вполне определенные дискретные значения, соответствующие квантовому числу п. Энергия электрона в атоме имеет отрицательное значение, так как электрон находится в связанном состоянии, из-за взаимодействия с ядром он не может покинуть атом. Основному состоянию атома водорода соответствует п = 1. Если атом поглощает фотон, то энергия электрона увеличивается (уменьшается по модулю), он переходит в состояние с большим значением квантового числа n. При излучении фотона атомом, находящимся в возбужденном состоянии, энергия электрона уменьшается и он переходит в состояние с меньшим значением п.

Решения уравнения Шрёдингера для многоэлектронных атомов показывают, что никаких принципиальных отличий в волновых функциях электронов, а следовательно, и в пространственном распределении плотности вероятности в таких атомах и в атоме водорода нет. Энергия электронов также имеет дискретные значения. Некоторые отличия, имеющиеся в волновых функциях и энергиях электронов, обусловлены электрон-электронными взаимодействиями.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 8446 — | 6702 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Английский физик П. Дирак (1902–1984) в 1928 году получилформулу для энергии электрона, которой удовлетворяли два решения: одно решение давало известный электрон с положительной энергией, другое – неизвестный электрон-двойник, но с отрицательной энергией. Энергия свободной частицы имеет вид

где E, m иp – энергия, масса и импульс частицы соответственно;c – скорость света в вакууме.

Центр Образования «Эврика»

Вид материала Закон

Содержание

Современные представления о строении атома
История развития современных представлений о строении атома
Строение атома с точки зрения квантовой механики
Е – полная энергия системы (скалярная величина), 
Периодический закон с точки зрения современных представлений о строении атома
Таблица Менделеева с точки зрения квантово-механической модели атома

Подобный материал:

  • Музей истории развития вт и икт центр дополнительного образования детей «Эврика», 48.25kb.
  • Проект программы Всероссиского фестиваля-конференции «Эврика-Авангард», 105.14kb.
  • Музей предпринимательства, рекламы и меценатства, 53.66kb.
  • Приказ от 28 февраля 2011 года №115 г. Абинск Об итогах второго (зонального) этапа, 971.75kb.
  • Положение об аналитической группе Образовательная программа начальной школы в соответствии, 35.65kb.
  • Образовательная программа дополнительного образования детей «Эврика», 80.2kb.
  • Программа профессиональной ориентации обучающихся на ступени основного общего образования, 269.75kb.
  • Реализация Программы партнерских отношений цдо «Эврика» с Московским институтом открытого, 180.83kb.
  • За шесть лет своего существования всероссийская литературная премия Эврика, 64.77kb.
  • Программа социализации обучающихся на ступени основного общего образования моу газимуро-Заводская, 443.08kb.

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О СТРОЕНИИ АТОМА

Д.И.Менделеев создал свой Периодический закон путём сопоставления свойств различных элементов. Гениальность прозрения великого ученого состоит в том, что он открыл Периодический закон задолго до того момента, когда его можно было вывести на основе знаний об устройстве атома. Во времена Менделеева наука только начинала свое проникновение в тайны микромира.

История развития современных представлений о строении атома

Само понятие «атом», означающее в переводе с древнегреческого «неделимый», возникло очень давно. В европейской культуре возникновение и широкое распространение понятие «атом» получило благодаря усилиям древнегреческой философской школе атомистов (V – IV вв. до н.э). У истоков атомизма стоят древнегреческие философы Левкипп и Демокрит. Они предполагали, что материя состоит из атомов – мельчайших неделимых частиц – и пустоты. Несмотря на то, что мы, благодаря работам ученых-физиков, знаем, что атом состоит из еще более мелких частиц, и, следовательно, делим, Левкипп и Демокрит внесли огромный вклад в формирование научного мировоззрения.

Учение атомистов получило новый толчок в эпоху Возрождения. Его сторонником был, например, Галилео Галилей. В XVII в. французский ученый Пьер Гассенди предположил, что из атомов состоят химические элементы [4].

Однако несмотря на то, что понятие «атом» было известно давно, в химии господствовала теория другого древнегреческого философа – Аристотеля, согласно учению которого основными началами природы являются четыре абстрактных принципа – холод, тепло, сухость и влажность, при комбинации которых формируется четыре основных «элемента-стихии»: земля, воздух, огонь и вода. Именно на такие представления опиралась средневековая алхимия. И только в начале XIX в., во многом благодаря работам английского ученого Дж. Дальтона, опиравшегося, в свою очередь, на работы Р. Бойля, М.В. Ломоносова и др., в химии окончательно воцарилось атомно-молекулярное учение [5].

Современные представления о строении атома начали формироваться в начале XIX в. Этому способствовал прогресс в химии и физике: в XVIII в был открыт электрон, α- и -лучи; кроме того, был достигнут общий прогресс в физике, химии и смежных науках. Около 1900 г. появилась первая модель атома – модель Дж. Дж. Томсона, который предположил, что положительный заряд равномерно заполняет весь объем атома, а отрицательно заряженные электроны равномерно вкраплены в него. Эта модель получила название «пудинг Томсона».

Хотя модель Томсона и объясняла некоторые экспериментальные факты, она не объясняла всех экспериментальных фактов, известных к тому времени. Окончательное поражение модели Томсона нанесли эксперименты Х. Гейгера и Э. Марсдена, проведенные в лаборатории известного английского физика Э.Резерфорда. Они обнаружили, что при бомбардировке атома α-частицами многие из них очень сильно отклоняются от первоначальной траектории, что указывало на наличие в атоме положительно заряженного ядра, обладающего большой массой и малыми размерами. Основываясь на этих данных Резерфорд предложил планетарную модель строения атома, предполагавшую, что электроны вращаются вокруг ядра подобно тому, как планеты Солнечной системы вращаются вокруг Солнца. Эта модель уже гораздо лучше описывала атом, но и она страдала недостатками. Так, поскольку электрон в этоймодели двигается с ускорением, он должен, в соответствии с законами классической электродинамики излучать энергию; потери энергии в виде электромагнитного излучения должны были бы в конце концов привести тому, что электроны упали бы на ядро и атом прекратил бы свое существование. Так, время жизни атома, в соответствии с моделью Резерфорда, должно было бы составлять величину порядка 10 нс, в то время как было известно, что атомы могут быть стабильны втечение гораздо более длительного времени. Кроме того, в модели Резерфорда траектория электрона изменяется непрерывно, что должно было бы соответствовать непрерывному спектру излечения, в то время как экспериментально было установлено, что спектр излучения водорода и других атомов, находящихся в газообразном состоянии, состоит из отдельных полос, т.е. дискретен.

В 1913 г. датский физик Н. Бор предложил свою теорию строения атома (рис. 1.). Он предположил, что электрон в атоме может двигаться только по стационарным, строго определенным орбитам, не поглощая и не излучая при этом энергию; поглощение или излучение энергии в виде отдельных квантов, энергия которых определяется из уравнения Планка (1) происходит только при переходе электрона с орбиты на орбиту (рис. 1).

(1)

В уравнении (1) E – энергия, h – постоянная Планка,  — частота электромагнитного излучения. Бор предположил, что момент количества движения электрона mvr на стационарной орбите может принимать только дискретные значения, кратные кванту действия (2).

(2)

В уравнении (2) m –масса электрона, v – его скорость, r – радиус орбиты, n – гавное квантовое число, которое может принимать значения 1, 2, 3, …

В соответствии с моделью Бора энергия электрона на стационарной орбите описывается уравнением (3):

(3)

Пользуясь уравнением (3), Бор рассчитал спектр атома водорода, и его расчеты прекрасно совпали с экспериментальными данными. Однако и модель Бора не смогла объяснить все разнообразие экспериментальных данных. Так, она не может объяснить поведение атома в магнитном поле, кроме того, она не способна объяснить того, что больше всего интересует химиков: как же образуются молекулы из атомов? Современная теория строения атома базируется на квантовой механике. Без преувеличения можно сказать, что квантовая механика является базисом, основой современной химии. Из-за особой роли квантовой механики для химии, сформировался даже отдельный раздел химии – квантовая химия. Благодаря усилиям ученых – химиков, физиков, математиков – квантовая химия является мощнейшим инструментом исследования. Без применения методов квантовой химии в настоящее время немыслимо ни одно фундаментальное исследование в химии

Строение атома с точки зрения квантовой механики

Квантовая механика начала формироваться в XIX в. в связи с тем, что некоторые свойства микрообъектов невозможно было описать с помощью классической механики. В 1900 г. лорд Релей (тот, который совместно с Рамзаем открыли аргон) и независимо от него другой английский физик – Дж. Джинс методами классической физики попытались описать излучение абсолютно черного тела, но оказалось, что эксперимент в данном случае не согласуется теорией, построенной методами классической физики. Это событие получило название «ультрафиолетовой катастрофы». Немецкий физик М. Планк для объяснения «ультрафиолетовой катастрофы» предположил, что электромагнитное излучение поглощается отдельными порциями – квантами, в соответствии с уравнением (1). Кроме того, оказалось, что электромагнитное излучение обладает двойственной природой: еще в 1801 г. немецкий физик Юнг продемонстрировал волновые свойства света, в то же время в 1899 русский физик П. Лебедев показал, что свет оказывает давление. Это побудило в 1905 г. А. Эйнштейна предположить, что свет представляет собой поток частиц, энергия которых равна h.. Дальнейший вклад в развитие квантовой механики внес Н. Бор, предложивший свою модель атома, рассмотренную выше.

В 1924 г. французский физик Луи де Бройль предположил, что если волны в некоторых обстоятельствах ведут себя как частицы, то и частицы, например, электрон, в некоторых обстоятельствах могут вести себя как волны и всякая движущаяся частица порождает волну, в соответствии с уравнением (4):

Читайте также:  В чем преимущество зрения и слуха

(4)

где λ – длина волны электрона, p – его импульс, т.е. произведение массы на скорость, h – постоянная Планка. Это предположение было подтверждено в 1927 г. американскими физиками ссылка скрыта и ссылка скрыта и английским физиком ссылка скрыта (сыном того самого Томсона, предложившего одну из первых моделей атома – см. выше), продемонстрировавшими дифракцию электронов на кристалле; таким образом, было показано, что электрону присущи свойства не только частицы, но и волны. Это явление, характерное для всех микрообъектов, получило название корпускулярно – волнового дуализма.

Еще одно отличие микрообъектов от макроскопических объектов выражается принципом неопределенности, сформулированным в 1927 г. немецким физиком В. Гейзенбергом (5):

(5)

где x – стандартное отклонение измерения координаты частицы, а y – стандартное отклонение измерения импульса частицы. Согласно принципу неопределенности невозможно одновременно точно измерить координату частицы и ее скорость: чем точнее измерить местоположение частицы, тем менее точно будет измерена ее скорость, и наоборот.

Корпускулярно-волновой дуализм и принцип неопределенности не позволяют описание микрообъектов методами классической физики. Вместо этого квантовая механика предлагает вероятностный подход: вместо того, чтобы, как в классической физике, описывать движение тела с помощью траектории, дающей точное местоположение и скорость тела в любой определенный момент времени, квантовая механика предлагает вероятностное описание микрообъектов. В ссылка скрыта изначально вводится представление о ссылка скрыта поведении частицы путем задания некоторой функции , называемой волновой и характеризующей вероятность местонахождения частицы. Затем выводится уравнение для этой функции. Такой способ описания микрообъектов предложил в 1926 г. австрийский физик Э. Шредингер и назвал его «волновой механикой». Незадолго до него ссылка скрыта, ссылка скрыта и ссылка скрыта предложили описывать движение микрочастиц с помощью специальных таблиц – матриц наблюдаемых величин и назвали такой способ описания «матричной механикой». И «волновая», и «матричная» механики хорошо описывали множество экспериментальных данных, теория пришла в соответствие с экспериментом. Позже Шредингер доказал математическую эквивалентность «волновой» и «матричной» механик, и такое описание стало называться квантовой механикой.

С точки зрения строения атома наибольший интерес представляет стационарное уравнение Шредингера, предполагающее, что волновая функция не зависит от времени (6):

(6)

где Е – полная энергия системы (скалярная величина), = (x,y,z) — волновая функция от координат трехмерного пространства — x, y и z, — оператор Гамильтона (7). При действии на волновую функцию оператора Гамильтона получается волновая функция, умноженная на число, равное полной энергии системы. Решением уравнения Шредингера является набор волновых функций – собственных функций и величин E – собственных значений, т.е. может существовать несколько решений уравнения Шредингера.

(7)

В операторе Гамильтона , и — частные производные, т.е. производные (x,y,z), взятые таким образом, что две другие переменные не изменяются и при дифференцировании по третьей переменной рассматриваются как константы, а U(x,y,z) – потенциальная энергия.

В рамках квантово-механической модели атома рассматривается система, состоящая из электрона (или электронов) и ядра, тогда U(x,y,z) в операторе Гамильтона – энергия электростатического притяжения электрона (электронов) к ядру и электростатического отталкивания электронов между собой (в случае многоэлектронных атомов). Так, в случае простейшего атома – атома водорода, состоящего из одного электрона и ядра, решение уравнения Шредингера дает набор собственных значений и собственных функций, описывающих поведение электрона в атоме водорода:


1

E1

2

E2

.

.

Физический смысл имеет не сама волновая функция, а квадрат ее модуля , представляющий собой плотность вероятности нахождения электрона в данной точке пространства; это означает, что если взять элементарный объем, расположенный на определенном расстоянии от ядра, и умножить его на плотность вероятности, то мы получим вероятность нахождения электрона в этом элементарном объеме. Плотность вероятности нахождения электрона в какой-либо точке пространства быстро падает по мере удаления от ядра, но, тем не менее, существует определенная, хотя и очень маленькая, вероятность нахождения электрона на довольно больших расстояниях от атома; поэтому состояние электрона в атоме принято описывать орбиталью – областью пространства, где вероятность нахождения электрона равна какой-либо определенной величине, например, 99 или 95 %. Таким образом, электрон в атоме водорода занимает одну из орбиталей, которой соответствует определенная энергия; говорят, что он расположен на одном из энергетических уровней. В обычных условиях (при невысокой температуре, отсутствии светового излучения с определенной длиной волны, электрон находится на самом нижнем уровне, в так называемом основном состоянии.

Из решения уравнения Шредингера для атома водорода вытекает, что поведение электрона в атоме описывается четырьмя квантовыми числами.

Главное квантовое число n может принимать значения 1, 2, 3, … и в основном определяет энергию орбитали.

Орбитальное квантовое число l может принимать значения 0, 1, 2, … n-1 и определяет форму орбитали. Каждому численному значению l приписывается буквенное обозначение и соответствует определенная геометрическая фигура (см. рис. 2).

Магнитное квантовое число m может принимать значения –l, . -1, 0, 1, . l и определяет ориентацию орбиталей в пространстве.

Спиновое квантовое число, которое может принимать только два значения: +1/2 и -1/2. Понятие спина электрона было введено в 1924 г. австрийским физиком В. Паули. Спин представляет собой собственный магнитный момент электрона, и может быть интерпретирован (очень приближенно) как результат вращения электрона вокруг собственной оси, которое может происходить по (+1/2) или против (-1/2) часовой стрелки.

Квантово-механическое описание атома на современном уровне хорошо согласуется с экспериментальными данными, при этом квантовая химия постоянно развивается. Одной из проблем квантовой химии на современном уровне является решение уравнения Шредингера для системы, состоящей более чем из двух тел. Для системы, состоящей из двух тел (для атома водорода, иона He + , и других водородоподобных систем) уравнение Шредингера может быть решено аналитически, т.е. волновые функции могут быть представлены обычными математическими выражениями. Для системы же, состоящей более чем из двух тел – многоэлектронных атомов, и, что представляет наибольший интерес для химиков, молекул, уравнение Шредингера не имеет аналитического решения. Однако еще в 1927 г. американский физик Д. Хартри предложил для решения уравнения Шредингера для системы, состоящей более чем из двух тел, рассматривать взаимодействие каждого электрона с усредненным полем, создаваемым ядром атома и остальными электронами. При этом полная волновая функция атома представляется в виде произведения волновых функций каждого электрона – одноэлектронных функций (8):

Уравнение Шредингера при этом решается методом последовательных приближений: сначала берется пробная волновая функция, решается уравнение Шредингера, затем варьируют величины энергии электрона на каждой орбитали таким образом, чтобы полная энергия системы уменьшилась, и процедура повторяется о тех пор, пока изменение полной энергии системы не станет близка к нулю, т.е. пока система не достигнет минимума энергии. Впоследствии метод Хартри (метод самосогласованного поля) был развит многими другими учеными. Большой вклад в развитие метода Хартри внесли Дж. Слэтер и В.А. Фок, после этого он получил название метода Хартри-Фока. Существуют множество различных наборов функций, использующихся для составления пробной функции – базисных функций. В зависимости от того, какой использован набор базисных функций (базис), метод Хартри-Фока дает большую или меньшую точность. Как правило, чем лучше подобран базис, тем точнее решение. В качестве базисных функций используются разные типы функций. Так, в рамках метода Хартри-Фока-Рутаана (МО ЛКАО – молекулярные орбитали как линейная комбинация атомных орбиталей) используют линейную комбинацию атомных орбиталей (9):

В связи с сильным прогрессом в области вычислительной техники, метод Хартри-Фока и различные его модификации, а также другие методы численного решения уравнения Шредингера широко применяются для вычисления свойств атомов и молекул, причем в последнее время удалось добиться большого прогресса в данной области [6].

ПЕРИОДИЧЕСКИЙ ЗАКОН С ТОЧКИ ЗРЕНИЯ СОВРЕМЕННЫХ ПРЕДСТАВЛЕНИЙ О СТРОЕНИИ АТОМА

В свете таких достижений современной химии, возникает закономерный вопрос: продолжает ли Периодический закон Д.И. Менделеева оставаться актуальным? Ведь ему уже 175 лет! Современная химия однозначно отвечает на этот вопрос утвердительно: да, Периодический закон – до сих пор важнейший закон химии, и изучение химии невозможно без знания Периодического закона. Более того, именно Периодический закон позволяет упростить как изучение, так и применение положений квантовой химии.

Дело в том, что, как уже упоминалось, точное решение уравнения Шредингера возможно только для водородоподобных атомов, а методы численного решения зачастую дают либо неудовлетворительную точность, либо требуют очень мощных даже по сегодняшним меркам компьютеров. Кроме того, квантовой химии не достает наглядности и простоты – того, чем и отличается Периодический закон. Тем не менее, в настоящее время химиками используется именно квантово-механическая интерпретация Периодического закона.

Таблица Менделеева с точки зрения квантово-механической модели атома

На рис. 3 показана длиннопериодная форма таблицы Менделеева, более удобная для квантово-механической интерпретации Периодического закона. Как упоминалось выше, состояние электрона в многоэлектронном атоме описывается четырьмя квантовыми числами – n, l, m и s. Кроме того, электроны в многоэлектронном атоме подчиняются принципу Паули и правилу Хунда. Принцип Паули гласит,

что в одном атоме не может быть двух электронов с одинаковыми значениями всех четырех квантовых чисел. Правило Хунда утверждает, что в пределах одного подуровня электроны располагаются по орбиталям таким образом, чтобы их суммарный спин был максимальным, иными словами, в пределах одного подуровня электроны распределяются так, чтобы число неспаренных электронов было максимальным. И, наконец, третьим принципом, в соответствии с которым происходит распределение электронов по орбиталям, является принцип наименьшей энергии (правило Клечковского): в атоме каждый электрон занимает тот подуровень, на котором его энергия будет минимальной. На рис. 4 представлена схема изменения энергии подуровней в зависимости от заряда ядра.

Энергия электрона в многоэлектронном атоме определяется в основном главным квантовым числом n, в меньшей степени она зависит от орбитального квантового числа l. В отсутствие внешнего магнитного поля орбитали с одним и тем же значением n и l, если их несколько, имеют одинаковую энергию – говорят, что они вырождены. Рассмотрим, каким образом происходит заполнение электронами энергетических уровней атомов по мере роста заряда ядра.

У элементов первого периода электроны располагаются на уровне с главным квантовым числом n = 1. Орбитальное квантовое число l при этом может принимать только одно значение, равное нулю, т.е. у элементов первого периода все электроны расположены на 1s орбитали, причем их не может быть более двух в соответствии с принципом Паули. Электронные формулы для водорода и гелия выглядят следующим образом: 1s 1 и 1s 2 , т.е. у водорода на 1s орбитали расположен один электрон, а у гелия – два.

У элементов второго периода происходит заполнение энергетических уровней, соответствующих главному квантовому числу n = 2. При n = 2 орбитальное квантовое число l может принимать уже два значения: 0 и 1, что соответствует s- и p-орбиталям, причем p-орбиталей три. Восемь элементов второго периода как раз соответствуют последовательному заполнению электронами энергетического уровня с n = 2. В пределах одно подуровня (одного и того же значения l = 1, соответствующего трем p-орбиталям) электроны распределяются таким образом, чтобы их суммарный спин был максимален, т.е. сначала по одному электрону занимают px-, py— и pz-орбитали (у азота), а затем уже к ним добавляется по второму электрону, причем спин второго электрона антипараллелен спину первого, в соответствии с принципом Паули.

Читайте также:  Вредны ли цветные линзы при хорошем зрении

Таким образом, видно, что номер периода в таблице Менделеева соответствует главному квантовому числу верхнего уровня, на котором имеются электроны – поразительное совпадение, ведь Менделеев открыл Периодический закон на век раньше, чем была создана квантовая механика.

Однако почему в третьем периоде всего восемь элементов, тогда как при n = 3 максимальное количество электронов равно 18? Объяснение этого дает схема, приведенная на рис. 4 и правило Клечковского: энергия 4s-орбитали ниже, чем энергии 3d-орбиталей, поэтому сначала происходит заполнение 4s-орбитали, а затем уже заполняются 3d-орбитали. 3d-орбитали лежат глубже, чем 4s-орбитали, поэтому свойства переходных элементов во многом сходны; так, все они проявляют химические и физические свойства, характерные для металлов. Именно поэтому Менделеев поместил их в побочные группы периодической системы. Еще сильнее «запаздывает» заполнение f-орбиталей, поэтому f-элементы выделены в два семейства – лантаноиды и актиноиды, химические свойства которых очень сходны.

Квантовая механика объясняет, почему химические свойства элементов одной и той же группы сходны в пределах подгруппы – очевидно, потому, что в пределах одной и той же подгруппы элементы имеют одну и ту же конфигурацию внешних электронных оболочек, которые как раз и наиболее важны для химии, поскольку именно перераспределение электронов внешних электронных оболочек атомов и позволяет им объединяться в молекулы.

Объясняет она и изменение свойств элементов в пределах одного периода или одной группы. Поскольку все элементы стремятся к получению стабильной внешней электронной оболочки, подобной электронной оболочке инертных газов, те из элементов главных подгрупп, которые расположены ближе к концу периода, легче достраивают свои электронные оболочки, принимая электроны от других атомов, те же из них, что расположены ближе к началу периода, легче обнажают свои внутренние заполненные оболочки, отдавая электроны. В пределах главной подгруппы металлические свойства увеличиваются, а неметаллические ослабляются сверху вниз, что связано с тем, что электроны внешних оболочек все сильнее экранируются внутренними электронными оболочками.

При детальном изучении распределения электронов у d- и f-элементов оказалось, что полностью и наполовину заполненные d- и f-подуровни обладают повышенной стабильностью, поэтому электронная конфигурация меди описывается формулой [Ar]4s 1 3d 10 ([Ar] показывает, что под 4s и 3d-орбиталями электроны расположены так же, как у аргона), серебра — [Kr]4s 1 3d 10 , золота — [Xe]4s 1 3d 10 . Поэтому эти элементы в различных соединениях часто одновалентны, и поэтому Менделеев расположил их в первой побочной подгруппе. Цинк же, кадмий и ртуть чаще всего двухвалентны, в связи со стабильностью полностью заполненного d-подуровня, и Менделеев расположил их во второй побочной подгруппе. Кроме того, видно, что максимальное количество электронов на внешних s- и d-орбиталях переходных элементов вплоть до первого элемента триады как раз совпадает с номером группы. Как видно, таблица Менделеева не только хорошо согласуется с квантовой механикой, но даже не пасует тогда, когда заполнение электронных оболочек в рамках квантовой механики рассматривается как аномальное – у меди, серебра и золота.

Атом с точки зрения квантовой механики

А. ШИШЛОВА. по материалам журналов «Успехи физических наук» и «Scientific american».

Квантово-механическое описание физических явлений микромира считается единственно верным и наиболее полно отвечающим реальности. Объекты макромира подчиняются законам другой, классической механики. Граница между макро- и микромиром размыта, а это вызывает целый ряд парадоксов и противоречий. Попытки их ликвидировать приводят к появлению других взглядов на квантовую механику и физику микромира. Видимо, наилучшим образом выразить их удалось американскому теоретику Дэвиду Джозефу Бому (1917-1992).

Чтобы понять, какие трудности испытывает современная квантовая механика, нужно вспомнить, чем она отличается от классической, ньютоновской механики. Ньютон создал общую картину мира, в которой механика выступала как универсальный закон движения материальных точек или частиц — маленьких комочков материи. Из этих частиц можно было построить любые объекты. Казалось, что механика Ньютона способна теоретически объяснить все природные явления. Однако в конце прошлого века выяснилось, что классическая механика неспособна объяснить законы теплового излучения нагретых тел. Этот, казалось бы, частный вопрос привел к необходимости пересмотреть физические теории и потребовал новых идей.

В 1900 году появилась работа немецкого физика Макса Планка, в которой эти новые идеи и появились. Планк предположил, что излучение происходит порциями, квантами. Такое представление противоречило классическим воззрениям, но прекрасно объясняло результаты экспериментов (в 1918 году эта работа была удостоена Нобелевской премии по физике). Спустя пять лет Альберт Эйнштейн показал, что не только излучение, но и поглощение энергии должно происходить дискретно, порциями, и сумел объяснить особенности фотоэффекта (Нобелевская премия 1921 года). Световой квант — фотон, по Эйнштейну, имея волновые свойства, одновременно во многом напоминает частицу (корпускулу). В отличие от волны, например, он либо поглощается целиком, либо не поглощается вовсе. Так возник принцип корпускулярно-волнового дуализма электромагнитного излучения.

В 1924 году французский физик Луи де Бройль выдвинул достаточно «безумную» идею, предположив, что все без исключения частицы — электроны, протоны и целые атомы обладают волновыми свойствами. Год спустя Эйнштейн отозвался об этой работе: «Хотя кажется, что ее писал сумасшедший, написана она солидно», а в 1929 году де Бройль получил за нее Нобелевскую премию.

На первый взгляд, повседневный опыт гипотезу де Бройля отвергает: в окружающих нас предметах ничего «волнового» как будто нет. Расчеты, однако, показывают, что длина дебройлевской волны электрона, ускоренно го до энергии 100 электрон-вольт, равна 10 -8 сантиметра. Эту волну нетрудно обнаружить экспериментально, пропустив поток электронов сквозь кристалл. На кристаллической решетке произойдет дифракция их волн и возникнет характерная полосатая картинка. А у пылинки массой 0,001 грамма при той же скорости длина волны де Бройля будет в 10 24 раз меньше, и обнаружить ее никакими средствами нельзя.

Волны де Бройля непохожи на механические волны — распространяющиеся в пространстве колебания материи. Они характеризуют вероятность обнаружить частицу в данной точке пространства. Любая частица оказывается как бы «размазанной» в пространстве, и существует отличная от нуля вероятность обнаружить ее где угодно. Классическим примером вероятностного описания объектов микромира служит опыт по дифракции электронов на двух щелях. Прошедший через щель электрон регистрируется на фотопластинке или на экране в виде пятнышка. Каждый электрон может пройти либо через правую щель, либо через левую совершенно случайным образом. Когда пятнышек становится очень много, на экране возникает дифракционная картина. Почернение экрана оказывается пропорциональным вероятности появления электрона в данном месте.

Идеи де Бройля углубил и развил австрийский физик Эрвин Шредингер. В 1926 году он вывел систему уравнений — волновых функций, описывающих поведение квантовых объектов во времени в зависимости от их энергии (Нобелевская премия 1933 года). Из уравнений следует, что любое воздействие на частицу меняет ее состояние. А поскольку процесс измерения параметров частицы неизбежно связан с воздействием, возникает вопрос: что же регистрирует измерительный прибор, вносящий непредсказуемые возмущения в состояние измеряемого объекта?

Таким образом, исследование элементарных частиц позволило установить, по крайней мере, три чрезвычайно удивительных факта, касающихся общей физической картины мира.

Во-первых, оказалось, что процессами, происходящими в природе, управляет чистый случай. Во-вторых, далеко не всегда существует принципиальная возможность указать точное положение материального объекта в пространстве. И, в-третьих, что, пожалуй, наиболее странно, поведение таких физических объектов, как «измерительный прибор», или «наблюдатель», не описывается фундаментальными законами, справедливыми для прочих физических систем.

Впервые к таким выводам пришли сами основоположники квантовой теории — Нильс Бор, Вернер Гейзенберг, Вольфганг Паули. Позднее данная точка зрения, получившая название Копенгагенской интерпретации квантовой механики, была принята в теоретической физике в качестве официальной, что и нашло свое отражение во всех стандартных учебниках.

Вполне возможно, однако, что подобные заключения были сделаны слишком поспешно. В 1952 году американский физик-теоретик Дэвид Д. Бом создал глубоко проработанную квантовую теорию, отличную от общепринятой, которая так же хорошо объясняет все известные ныне особенности поведения субатомных частиц. Она представляет собой единый набор физических законов, позволяющий избежать какой-либо случайности в описании поведения физических объектов, а также неопределенности их положения в пространстве. Несмотря на это, бомовская теория до самого последнего времени почти полностью игнорировалась.

Чтобы лучше представить себе всю сложность описания квантовых явлений, проведем несколько мысленных экспериментов по измерению спина (собственного момента количества движения) электрона. Мысленных потому, что создать измерительный прибор, позволяющий точно измерять обе компоненты спина, пока что не удалось никому. Столь же безуспешными оказываются попытки предсказать, какие именно электроны поменяют свой спин в ходе описанного эксперимента, а какие нет.

Эти эксперименты включают в себя измерение двух компонент спина, которые условно будем называть «вертикальным» и «горизонтальным» спинами. Каждая из компонент в свою очередь может принимать одно из значений, которые мы также условно назовем «верхним» и «нижним», «правым» и «левым» спинами соответственно. Измерение основано на пространственном разделении частиц с разными спинами. Приборы, осуществляющие разделение, можно представить себе как некие «черные ящики» двух типов — «горизонтальный» и «вертикальный» (рис. 1). Известно, что разные компоненты спина свободной частицы совершенно независимы (физики говорят — не коррелируют между собой). Однако в ходе измерения одной компоненты значение другой может измениться, причем совершенно неконтролируемым образом (2).

Пытаясь объяснить полученные результаты, традиционная квантовая теория пришла к выводу, что необходимо полностью отказаться от детерминистского, то есть полностью определяющего состояние

объекта, описания явлений микромира. Поведение электронов подчиняется принципу неопределенности, согласно которому компоненты спина не могут быть точно измерены одновременно.

Продолжим наши мысленные эксперименты. Будем теперь не только расщеплять пучки электронов, но и заставим их отражаться от неких поверхностей, пересекаться и снова соединяться в один пучок в специальном «черном ящике» (3).

Результаты этих экспериментов противоречат обычной логике. Действительно, рассмотрим поведение какого-либо электрона в случае, когда поглощающая стенка отсутствует (3 А). Куда он будет двигаться? Допустим, что вниз. Тогда, если первоначально электрон имел «правый» спин, он так и останется правым до конца эксперимента. Однако, применив к этому электрону результаты другого эксперимента (3 Б), мы увидим, что его «горизонтальный» спин на выходе должен быть в половине случаев «правым», а в половине — «левым». Явное противоречие. Мог ли электрон пойти вверх? Нет, по той же самой причине. Быть может, он двигался не вниз, не вверх, а как-то по-другому? Но, перекрыв верхний и нижний маршруты поглощающими стенками, мы на выходе не получим вообще ничего. Остается предположить, что электрон может двигаться сразу по двум направлениям. Тогда, имея возможность фиксировать его положение в разные моменты времени, в половине случаев мы находили бы его на пути вверх, а в половине — на пути вниз. Ситуация достаточно парадоксальная: материальная частица не может ни раздваиваться, ни «прыгать» с одной траектории на другую.

Читайте также:  Очки и оправы силуэт для зрения

Что говорит в данном случае традиционная квантовая теория? Она просто объявляет все рассмотренные ситуации невозможными, а саму постановку вопроса об определенном направлении движения электрона (и соответственно о направлении его спина) — некорректной. Проявление квантовой природы электрона в том и заключается, что ответа на данный вопрос в принципе не существует. Состояние электрона представляет собой суперпозицию, то есть сумму двух состояний, каждое из которых имеет определенное значение «вертикального» спина. Понятие о суперпозиции — один из основополагающих принципов квантовой механики, с помощью которого вот уже более семидесяти лет удается успешно объяснять и предсказывать поведение всех известных квантовых систем.

Для математического описания состояний квантовых объектов используется волновая функция, которая в случае одной частицы просто определяет ее координаты. Квадрат волновой функции равен вероятности обнаружить частицу в данной точке пространства. Таким образом, если частица находится в некой области А, ее волновая функция равна нулю всюду, за исключением этой области. Аналогично частица, локализованная в области Б, имеет волновую функцию, отличную от нуля только в Б. Если же состояние частицы оказывается суперпозицией пребывания ее в А и Б, то волновая функция, описывающая такое состояние, отлична от нуля в обеих областях пространства и равна нулю всюду вне их. Однако, если мы поставим эксперимент по определению положения такой частицы, каждое измерение будет давать нам только одно значение: в половине случаев мы обнаружим частицу в области А, а в половине — в Б ( 4). Это означает, что при взаимодействии частицы с окружением, когда фиксируется только одно из состояний частицы, ее волновая функция как бы коллапсирует, «схлопывается» в точку.

Одно из основных утверждений квантовой механики заключается в том, что физические объекты полностью описываются их волновыми функциями. Таким образом, весь смысл законов физики сводится к предсказанию изменений волновых функций во времени. Эти законы делятся на две категории в зависимости от того, предоставлена ли система самой себе или же она находится под непосредственным наблюдением и в ней производятся измерения.

В первом случае мы имеем дело с линейными дифференциальными «уравнениями движения», уравнениями детерминистскими, которые полностью описывают состояние микрочастиц. Следовательно, зная волновую функцию частицы в какой-то момент времени, можно точно предсказать поведение частицы в любой последующий момент. Однако при попытке предсказать результаты измерений каких-либо свойств той же частицы нам придется иметь дело уже с совершенно другими законами — чисто вероятностными.

Возникает естественный вопрос: как отличить условия применимости той или другой группы законов? Создатели квантовой механики указывают на необходимость четкого разделения всех физических процессов на «измерения» и «собственно физические процессы», то есть на «наблюдателей» и «наблюдаемых», или, по философской терминологии, на субъект и объект. Однако отличие между этими категориями носит не принципиальный, а чисто относительный характер. Тем самым, по мнению многих физиков и философов, квантовая теория в такой интерпретации становится неоднозначной, теряет свою объективность и фундаментальность. «Проблема измерения» стала основным камнем преткновения в квантовой механике. Ситуация несколько напоминает знаменитую апорию Зенона «Куча». Одно зерно — явно не куча, а тысяча (или, если угодно, миллион) — куча. Два зерна — тоже не куча, а 999 (или 999999) — куча. Эта цепочка рассуждений приводит к некоему количеству зерен, при котором понятия «куча — не куча» станут неопределенными. Они будут зависеть от субъективной оценки наблюдателя, то есть от способа измерений, хотя бы и на глаз.

Все окружающие нас макроскопические тела предполагаются точечными (или протяженными) объектами с фиксированными координатами, которые подчиняются законам классической механики. Но это означает, что классическое описание можно продолжить вплоть до самых малых частиц. С другой стороны, идя со стороны микромира, следует включать в волновое описание объекты все большего размера вплоть до Вселенной в целом. Граница между макро- и микромиром не определена, и попытки ее обозначить приводят к парадоксу. Наиболее четко указывает на него так называемая «задача о кошке Шредингера» — мысленный эксперимент, предложенный Эрвином Шредингером в 1935 году (5).

В закрытом ящике сидит кошка. Там же находятся флакон с ядом, источник излучения и счетчик заряженных частиц, подсоединенный к устройству, разбивающему флакон в момент регистрации частицы. Если яд разольется, кошка погибнет. Зарегистрировал счетчик частицу или нет, мы не можем знать в принципе: законы квантовой механики подчиняются законам вероятности. И с этой точки зрения, пока счетчик не произвел измерения, он находится в суперпозиции двух состояний — «регистрация — нерегистрация». Но тогда в этот момент и кошка оказывается в суперпозиции состояний жизни и смерти.

В действительности, конечно, реального парадокса здесь быть не может. Регистрация частицы — процесс необратимый. Он сопровождается коллапсом волновой функции, вслед за чем срабатывает механизм, разбивающий флакон. Однако ортодоксальная квантовая механика не рассматривает необратимых явлений. Парадокс, возникающий в полном согласии с ее законами, наглядно показывает, что между квантовым микромиром и классическим макромиром имеется некая промежуточная область, в которой квантовая механика не работает.

Итак, несмотря на несомненные успехи квантовой механики в объяснении экспериментальных фактов, в настоящий момент она едва ли может претендовать на полноту и универсальность описания физических явлений. Одной из наиболее смелых альтернатив квантовой механики и стала теория, предложенная Дэвидом Бомом.

Задавшись целью построить теорию, свободную от принципа неопределенности, Бом предложил считать микрочастицу материальной точкой, способной занимать точное положение в пространстве. Ее волновая функция получает статус не характеристики вероятности, а вполне реального физического объекта, некоего квантовомеханического поля, оказывающего мгновенное силовое воздействие. В свете этой интерпретации, например, «парадокс Эйнштейна-Подольского-Розена» (см. «Наука и жизнь» № 5, 1998 г.) перестает быть парадоксом. Все законы, управляющие физическими процессами, становятся строго детерминистскими и имеют вид линейных дифференциальных уравнений. Одна группа уравнений описывает изменение волновых функций во времени, другая — их воздействие на соответствующие частицы. Законы применимы ко всем физическим объектам без исключения — и к «наблюдателям», и к «наблюдаемым».

Таким образом, если в какой-то момент известны положение всех частиц во Вселенной и полная волновая функция каждой, то в принципе можно точно рассчитать положение частиц и их волновые функции в любой последующий момент времени. Следовательно, ни о какой случайности в физических процессах не может быть и речи. Другое дело, что мы никогда не сможем обладать всей информацией, необходимой для точных вычислений, да и сами расчеты оказываются непреодолимо сложными. Принципиальное незнание многих параметров системы приводит к тому, что на практике мы всегда оперируем некими усредненными величинами. Именно это «незнание», по мнению Бома, заставляет нас прибегать к вероятностным законам при описании явлений в микромире (подобная ситуация возникает и в классической статистической механике, например в термодинамике, которая имеет дело с огромным количеством молекул). Теория Бома предусматривает определенные правила усреднения неизвестных параметров и вычисления вероятностей.

Вернемся к экспериментам с электронами, изображенным на рис. 3 А и Б. Теория Бома дает им следующее объяснение. Направление движения электрона на выходе из «вертикального ящика» полностью определяется исходными условиями — начальным положением электрона и его волновой функцией. В то время как электрон движется либо вверх, либо вниз, его волновая функция, как это следует из дифференциальных уравнений движения, расщепится и станет распространяться сразу в двух направлениях. Таким образом, одна часть волновой функции окажется «пустой», то есть будет распространяться отдельно от электрона. Отразившись от стенок, обе части волновой функции воссоединятся в «черном ящике», и при этом электрон получит информацию о том участке пути, где его не было. Содержание этой информации, например о препятствии на пути «пустой» волновой функции, может оказать существенное воздействие на свойства электрона. Это и снимает логическое противоречие между результатами экспериментов, изображенных на рисунке. Необходимо отметить одно любопытное свойство «пустых» волновых функций: будучи реальными, они тем не менее никак не влияют на посторонние объекты и не могут быть зарегистрированы измерительными приборами. А на «свой» электрон «пустая» волновая функция оказывает силовое воздействие независимо от расстояния, причем воздействие это передается мгновенно.

Попытки «исправить» квантовую механику или объяснить возникающие в ней противоречия предпринимали многие исследователи. Построить детерминистскую теорию микромира, например, пытался де Бройль, который был согласен с Эйнштейном, что «Бог не играет в кости». А видный отечественный теоретик Д. И. Блохинцев считал, что особенности квантовой механики проистекают из-за невозможности изолировать частицу от окружающего мира. При любой температуре выше абсолютного нуля тела излучают и поглощают электромаг нитные волны. С позиций квантовой механики это означает, что их положение непрерывно «измеряется», вызывая коллапс волновых функций. «С этой точки зрения никаких изолированных, предоставленных самим себе «свободных» частиц не существует, — писал Блохинцев. — Возможно, что в этой связи частиц и cреды и скрывается природа той невозможности изолировать частицу, которая проявляется в аппарате квантовой механики».

И все-таки — почему же интепретация квантовой механики, предложенная Бомом, до сих пор не получила должного признания в научном мире? И как объяснить почти повсеместное господство традиционной теории, несмотря на все ее парадоксы и «темные места»?

Долгое время новую теорию не хотели рассматривать всерьез на основании того, что в предсказании исхода конкретных экспериментов она полностью совпадает с квантовой механикой, не приводя к существен но новым результатам. Вернер Гейзенберг, например, считал, что «для любого опыта его (Бома) результаты совпадают с копенгагенской интерпретацией. Отсюда первое следствие: интерпретацию Бома нельзя опровергнуть экспериментом. » Некоторые считают теорию ошибочной, так как в ней преимущественная роль отводится положению частицы в пространстве. По их мнению, это противоречит физической реальности, ибо явления в квантовом мире принципиально не могут быть описаны детерминистскими законами. Существует немало и других, не менее спорных аргументов против теории Бома, которые сами требуют серьезных доказательств. Во всяком случае, ее пока что действительно никому не удалось полностью опровергнуть. Более того — работу над ее совершенствованием продолжают многие, в том числе отечественные, исследователи.

Источники:
  • http://studfiles.net/preview/844680/page:16/
  • http://geum.ru/next/art-171424.leaf-2.php
  • http://m.nkj.ru/archive/articles/10957/