Меню Рубрики

Анатомия и физиология органов зрения и вспомогательного аппарата

Глаза человека, может быть, и небольшой орган, но они дают нам то, что многие считают самым важным из наших чувственных ощущений мира вокруг – зрение.

Хотя конечное изображение и формируется головным мозгом, но его качество, несомненно, зависит от состояния и функциональности воспринимающего органа – глаза.

Анатомия и физиология этого органа у человека сформировалась в ходе эволюции под влиянием условий, необходимых для выживания нашего вида. Поэтому имеет ряд особенностей – центральное, периферическое, бинокулярное зрение, возможность приспосабливаться к интенсивности освещения, фокусироваться на объектах, находящихся на разном удалении.

Глазное яблоко неспроста носит такое название, так как орган имеет не совсем правильную форму сферы. Его кривизна больше в направлении спереди назад.

Находятся эти органы на одной плоскости лицевой части черепа достаточно близко друг от друга, чтобы обеспечивать перекрывание полей зрения. В черепе человека имеется специальное «посадочное место» для глаз – глазницы, которые защищают орган и служат местом прикрепления глазодвигательных мышц. Размеры орбиты взрослого человека обычного телосложения находятся в пределах 4-5 см по глубине, 4 см по ширине и 3,5 см по высоте. Глубина залегания глаза обусловлена этими размерами, а также объемом жировой клетчатки в глазнице.

Спереди глаз защищен с помощью верхнего и нижнего века – особых кожных складок с хрящеватым каркасом. Они мгновенно готовы сомкнуться, проявив мигательный рефлекс при раздражении, прикосновении к роговице, ярком свете, порывах ветра. На переднем наружном крае век в два ряда растут ресницы, здесь же открываются протоки железок.

Пластическая анатомия щелей век может быть относительно внутреннего угла глаза приподнятой, идти вровень, или внешний угол будет опущен. Чаще всего встречается приподнятый наружный угол глаза.

По краю век начинается тонкая защитная оболочка. Слой конъюнктивы покрывает оба века и глазное яблоко, переходя в его задней части в роговичный эпителий. Функция этой оболочки – продуцирование слизистой и водянистой частей слезной жидкости, которыми смазывается глаз. Конъюнктива имеет богатое кровоснабжение, и по ее состоянию нередко можно судить не только о заболеваниях глаз, но и об общем состоянии организма (например, при болезнях печени она может иметь желтоватый оттенок).

Вместе с веками и конъюнктивой вспомогательный аппарат глаза составляют мышцы, осуществляющие движения глазами (прямые и косые) и слезный аппарат (слезная железа и дополнительные мелкие железы). Основная железа включается, когда есть необходимость устранения раздражающего элемента с глаза, осуществляет выработку слез при эмоциональной реакции. Для перманентного смачивания глаза слезу производят в небольшом количестве добавочные железы.

Смачивание глаза происходит мигающими движениями век и мягким скольжением конъюнктивы. Слезная жидкость стекает через пространство за нижним веком, собирается в слезном озере, потом в слезном мешке вне орбиты. Из последнего по носослезному протоку жидкость отводится в нижний носовой ход.

Наружный покров

Анатомические особенности покрывающей глаз оболочки заключаются в ее неоднородности. Задняя часть представлена более плотным слоем – склерой. Он непрозрачен, так как образован беспорядочным скоплением фибриновых волокон. Хотя у младенцев склера еще настолько нежная, что имеет не белесоватый, а голубой оттенок. С возрастом в оболочке происходит отложение липидов, и она характерно желтеет.

Это опорный слой, обеспечивающий форму глазу и дающий возможность прикрепления глазодвигательных мышц. Также в задней части глазного яблока склера на некотором продолжении покрывает зрительный глазной нерв, выходящий от глаза.

Глазное яблоко не полностью покрывается склерой. В передней 1/6 части оболочка глаза становится прозрачной и называется роговицей. Это куполообразная часть глазного яблока. Именно от ее прозрачности, гладкости и симметричности кривизны зависит характер преломления лучей и качество зрения. Вместе с хрусталиком роговица ответственна за фокусировку света на сетчатке.

Средний слой

Эта оболочка, находящаяся между слоем склеры и сетчатки, сложного строения. По анатомическим особенностям и функциям в ней выделяют радужку, цилиарное тело, хориоидею.

Второе распространенное название – ирис. Она достаточно тонкая – не достигает и полмиллиметра, а в месте перетекания в цилиарное тело вдвое тоньше.

Непрозрачность структуры обеспечивается двойным слоем эпителия на задней поверхности радужки, а цвет дает наличие клеток-хроматофоров в строме. Радужка, как правило, мало чувствительна к болевым раздражениям, поскольку содержит немного нервных окончаний. Основная ее функция – адаптация – регулирование количества света, которое достигнет сетчатки. Диафрагма содержит круговые мышцы вокруг зрачка и радиальных мышц, расходящиеся наподобие лучей.

Реснитчатое тело

Это анатомическое образование представляет собой «бублик», находящийся между радужной и, собственно, сосудистой оболочками. От внутреннего диаметра этого кольца к линзе тянутся цилиарные отростки. В свою очередь, от них отходит огромное количество тончайших зонулярных волокон. Они прикрепляются к линзе по линии экватора. Все вместе эти волокна образуют цинную связку. В толще реснитчатого тела находятся цилиарные мышцы, с помощью которых хрусталик меняет свою кривизну и, соответственно, фокус. Напряжение мышц позволяет линзе округлиться и рассматривать предметы на близком расстоянии. Расслабление, наоборот, ведет к уплощению хрусталика и отдалению фокуса.

Реснитчатое тело в офтальмологии – одна из главных мишеней при лечении глаукомы, так как именно его клетками вырабатывается внутриглазная жидкость, создающая внутриглазное давление.

Пролегает под склерой и представляет большую часть всего сосудистого сплетения. Благодаря ей, реализуется питание сетчатки, ультрафильтрация, а также механическая амортизация.

Состоит из переплетения задних коротких цилиарных артериол. В переднем отделе эти сосуды создают анастамозы с артериолами большого кровеносного круга радужной оболочки. Сзади в районе выхода зрительного нерва эта сеть сообщается с капиллярами зрительного нерва, идущими от центральной артерии сетчатки.

Часто на фото и видео при расширенном зрачке и яркой вспышке могут получиться «красные глаза» – это видимая часть глазного дна, сетчатки и сосудистой оболочки.

Внутренний слой

Большое внимание атлас по анатомии человеческого глаза уделяет обычно его внутренней оболочке, называемой сетчаткой. Именно благодаря ей мы можем воспринимать световые раздражители, из которых потом формируются зрительные образы.

Отдельная лекция может быть посвящена только анатомии и физиологии внутреннего слоя как части мозга. Ведь на самом деле сетчатка, хоть и отделилась от него на ранней стадии развития, но до сих пор посредством зрительного нерва имеет прочную связь и обеспечивает трансформацию световых раздражителей в нервные импульсы.

Сетчатка может воспринимать световые раздражители только той площадью, что впереди очерчена зубчатой линией, а в задней части диском зрительного нерва. Точку выхода нерва называют «слепым пятном», здесь совершенно отсутствуют фоторецепторы. По этим же границам происходит сращение фоторецепторного слоя с сосудистым. Такое строение дает возможность питать сетчатку посредством сосудов хориоидеи и центральной артерии. Примечательно то, что оба этих слоя нечувствительны к боли, так как в нем нет ноцицептивных рецепторов.

Сетчатка – необычная ткань. Ее клетки бывают нескольких видов и располагаются по всей площади неравномерно. Слой, обращенный к внутреннему пространству глаза, составляют особые клетки – фоторецепторы, которые содержат светочувствительные пигменты.

Одни из таких клеток – палочки , в большей мере занимают периферию и обеспечивают сумеречное зрение. Несколько палочек, как веер, соединяются с одной биполярной клеткой, а группа биполярных клеток – с одной ганглиозной. Таким образом, нервная клетка получает достаточно мощный сигнал при малом освещении, и человеку предоставляется возможность видеть в сумерках.

Другой вид фоторецепторных клеток – колбочки – специализируются на восприятии цвета и обеспечении четкого и ясного видения. Они концентрируются по центру сетчатки. Самая большая густота колбочек наблюдается в так называемом желтом пятне. И здесь есть место самого острого восприятия, входящее в состав желтого пятна – центральное углубление. Эта зона полностью избавлена от кровеносных сосудов, застилающих поле зрения. А высокая четкость зрительного сигнала обусловлена прямой связью каждого из фоторецепторов через единственную биполярную клетку с ганглиозной. Благодаря такой физиологии, сигнал напрямую транслируется к зрительному нерву, который берет свое начало из сплетения длинных отростков ганглиозных клеток – аксонов.

Наполнение глазного яблока

Внутреннее пространство глаза поделено на несколько «отсеков». Ближайший к роговичной поверхности глаза называют передней камерой. Ее местоположение – от роговицы до радужки. Она имеет несколько важных ролей в глазах. Во-первых, обладает иммунной привилегией – здесь не развивается иммунный ответ на появление антигенов. Так появляется возможность избегать чрезмерных воспалительных реакций органов зрения.

Во-вторых, своим анатомическим строением, а именно наличием угла передней камеры, она обеспечивает циркуляцию внутриглазной водянистой влаги.

Следующий «отсек» – задняя камера – небольшое пространство, ограниченное радужкой спереди и линзой с цинной связкой позади.

Эти две камеры заполнены водянистой влагой, вырабатываемой цилиарным телом. Основное назначение данной жидкости – питание участков глаза, где нет кровеносных сосудов. Ее физиологичная циркуляция обеспечивает поддержание внутриглазного давления.

Стекловидное тело

Эта структура отделена от других тонкой фиброзной мембраной, а внутреннее наполнение имеет особую консистенцию, благодаря растворенным в воде белкам, гиалуроновой кислоте и электролитам. Это формообразующая составляющая глаза связана с цилиарным телом, капсулой линзы и сетчаткой по зубчатой линии и в районе диска зрительного нерва. Поддерживает внутренние структуры и обеспечивает тургор и постоянство формы глаза.

Оптическим центром зрительной системы глаза является его линза – хрусталик. Он двояковыпуклый, прозрачный и эластичный. Капсула тонкая. Внутреннее содержимое хрусталика полутвердое, на 2/3 состоит из воды и на 1/3 из белка. Его главная задача – преломление света и участие в аккомодации. Это возможно, благодаря способности хрусталика варьировать свою кривизну при натяжении и расслаблении цинной связки.

Строение глаза выверено очень точно, в нем нет лишних и незадействованных структур, начиная от оптической системы и заканчивая удивительной физиологией, позволяющей ни замерзать, ни ощущать боли, обеспечивать слаженную работу парных органов.

Лекция №1. Анатомия, физиология и функции зрительного анализатора.

Анатомия, физиология и функции зрительного анализатора.

Орган зрения является для человека важнейшим из всех органов чувств. Он позво-ляет получить до 90% информации об окружающем мире. Уникальность зрения, по сравнению с другими анализаторами, состоит в том, что оно позволяет не только опоз-навать предмет, но и определять его место в пространстве, следить за перемещения-ми.

По данным ВОЗ в мире в настоящее время около 45 млн слепых и 135 млн слабо-видящих людей. В России число слепых и лиц с нарушениями зрения составляет более 300 тысяч человек.

Глаз отражает состояние всего организма и является не только зеркалом души, но и зеркалом патологии. Большинство глазных заболеваний представляют собой проявле-ния разнообразных патологических процессов в организме. Любое заболевание глаз, ведущее к снижению зрения и тем более к слепоте – огромное несчастье для человека, так как выключает еще достаточно молодого, здорового и работоспособного человека из трудовой деятельности.

Развитие глаза человека начинается на второй недели эмбриональной жизни из моз-говой трубки. В конце четвертой недели возникает хрусталик, вокруг которого форми-руется сосудистая оболочка. Постепенно дифференцируется склера, камеры глаза, ста-новится прозрачным стекловидное тело. Из кожных складок формируются веки.

Существуют особые, критические периоды развития, в течение которых орган зре-ния особенно чувствителен к воздействию различных повреждающих факторов, спо-собных привести к возникновению различных его аномалий.

Орбита, или глазница, – костное вместилище для глаза. По форме она напоминает четырехгранную пирамиду, вершина которой обращена в полость черепа, а основание обращено кпереди.

Орбиту образуют кости черепа: лобная, скуловая, верхняя челюсть, носовая, слез-ная, решетчатая и клиновидная. Анатомическая связь орбиты с придаточными пазуха-ми нередко является причиной перехода воспалительного процесса или прорастания опухоли из них в орбиту.

В орбите различают четыре стенки: верхнюю, нижнюю, внутреннюю и наружную.

У вершины глазницы имеется круглой формы диаметром 4 мм зрительное отвер­стие, через которое в полость орбиты входит глазничная артерия и выходит зри­тель-ный нерв в полость черепа. Содержимое глазницы состоит из глазного яблока, клетчатки, фасции, мышц, сосудов, нервов. В глазнице находятся восемь мышц. Из них шесть глазодвигательных (4 прямые и 2 косые), мышца, поднимающая верхнее ве-ко и орбитальная мышца.

Веки – подвижные кожно-мышечные складки, покрывающие глазное яблоко спе-реди. Образуют глазную щель. Состоят из пяти слоев: кожа, рыхлая подкожная клет-чатка (не содержит жира), круговая мышца глаза, хрящ, конъюнктива.

— защищают глаза благодаря рефлекторному смыканию под влиянием раздражающих воздействий.

Это соединительная оболочка, покрывает глазное яблоко спереди (за исключением роговицы) и веки с внутренней стороны. Она тонкая, прозрачная, розовая, гладкая, блестящая, влажная. При закрытых веках конъюнктива образует щелевидную полость – конъюнктивальный мешок.

— защитная (при попадании в конъюнктивальную полость инородного тела или при па-тологическом процессе)

— механическая (обильная секреция слезной и слизистой жидкости)

— увлажняющая (постоянная выработка секрета)

— питательная (из ее сосудов через роговицу питательные вещества попадают в глаз)

— барьерная (богата лимфоидными элементами).

Слезный аппарат состоит из слезной железы и слезоотводящих путей (слезных то-чек, слезных канальцев, слезного мешка и слезно-носового канала).

Читайте также:  Азартные игры с точки зрения эзотерики

Слезная железа располагается в углублении в верхне-наружной стенке орбиты.

Функции слезной железы: продукция слезы (после второго месяца жизни). В покое у человека в сутки выделяется около 1 мл слезы.

Слеза равномерно распределяется по поверхности глазного яблока, всасывается верхней и нижней слезными точками, оттуда поступает в верхний и нижний слезный канальцы. Канальцы, соединяясь в общий слезный каналец, впадают в слезный мешок. Слезный мешок переходит в слезно-носовой канал, который открывается под нижнюю носовую раковину.

Функции слезы: бактерицидная (содержит фермент лизоцим), питательная (содержит 98% воды, 0,1% белка, 0,8% минеральных солей, калий, натрий, хлор, глюкозу и моче-вину), увлажняющая (обеспечивает постоянное увлажнение глазного яблока).

Глазное яблоко имеет шесть глазодвигательных мышц – четыре прямые (верхняя, нижняя, наружная, внутренняя) и две косые (нижняя и верхняя). Эти мышцы обеспе-чивают хорошую подвижность его во всех направлениях.

Строение глазного яблока.

Глазное яблоко имеет неправильную шаровидную форму. Средние размеры глаз-ного яблока у взрослого человека – 24 мм. Глазное яблоко имеет три оболочки:

— наружная (фиброзная) – состоит из склеры и роговицы

— средняя (сосудистая) – состоит из радужки, цилиарного тела и собственно сосудис-той (хориоидеи).

Склера – наружная, непрозрачная, плотная, состоит из коллагеновых волокон.

Функции: защитная, формообразующая, обеспечивает тургор глазного яблока.

Место перехода склеры в роговицу называется лимб.

Роговица – передняя, более выпуклая часть наружной оболочки глаза. Она проз-рачная, бессосудистая, гладкая, зеркальная, блестящая, сферичная, высокочувствите-льная (в ней имеется большое количество чувствительных нервных окончаний).

Функции: преломление света (сила преломления – 40Д у взрослых и 45Д у детей), защитная.

Горизонтальный диаметр роговицы у новорожденных 9мм, в 1 год – 10мм, у взрос-лых – 11мм.

Она состоит из радужки, цилиарного тела и хориоидеи. Все три отдела сосудистой оболочки объединяют под названием увеальный тракт.

Радужка – представляет собой диафрагму, в центре которой имеется отверстие – зрачок. Зрачок может расширяться (в темноте) и сужаться (при ярком освещении). Цвет радужки зависит от количества пигмента. Постоянная окраска радужки форми-руется лишь к 2-летнему возрасту. В радужке много чувствительных нервных окон-чаний.

Функции: принимает участие в фильтрации и оттоке внутриглазной жидкости.

Цилиарное тело – находится между радужкой и собственно сосудистой оболочкой. В цилиарном теле много чувствительных нервных окончаний. Цилиарное тело имеет тот же источник кровоснабжения, что и радужка (передние цилиарные артерии, задние длинные цилиарные артерии). Поэтому его воспаление (циклит), как правило, проте-кает одновременно с воспалением радужки (иридоциклит).

Функции: продукция внутриглазной жидкости, участие в акте аккомодации.

От него идут цинновы связки и вплетаются в капсулу хрусталика.

Собственно сосудистая оболочка или хориоидея является задним отделом сосу-дистого тракта, располагается между сетчаткой и склерой.

Функции: обеспечивает питание сетчатки, принимает участие в ультрафильтрации и оттоке внутриглазной жидкости, регуляция офтальмотонуса.

В хориоидее нет чувствительных нервных окончаний, вследствие этого воспаления ее, травмы и опухоли протекают безболезненно. Кровоснабжение хориоидеи осущест-вляется из задних коротких цилиарных артерий, поэтому ее воспаление (хориоидит) протекает изолированно от воспалительных процессов переднего отдела увеального тракта. Кровоток в хориоидее замедленный, что способствует возникновению в ней метастазов опухолей различной локализации и оседанию возбудителей различных инфекционных заболеваний.

Сетчатка представляет собой высокодифференцированную нервную ткань. Это пе-риферический отдел зрительного анализатора. Имеет фоторецепторы – палочки и кол-бочки. Колбочки осуществляют центральное зрение, дневное зрение и цветоощуще-ние. Палочки – периферическое зрение, ночное и сумеречное зрение. В сетчатке нет чувствительных нервных окончаний, поэтому все ее заболевания протекают безболез-ненно. Внутренняя поверхность глазного яблока получила название глазного дна. На глазном дне имеются два важных образования: диск зрительного нерва (место выхода нерва из сетчатки) и область желтого пятна. В центральной ямке желтого пятна распо-лагаются только колбочки, что обеспечивает высокую разрешающую способность этой зоны. Начавшись на глазном дне в виде диска, зрительный нерв покидает глазное яблоко, затем глазницу и в области турецкого седла встречается с нервом второго гла-за. В турецком седле осуществляется неполный перекрест зрительных нервов, имену-емый хиазмой. После частичного перекреста зрительные пути меняют свое название и называются зрительные тракты. Зрительные тракты направляются к подкорковым зри-тельным центрам и далее к зрительным центрам коры головного мозга – затылочным долям.

Функции: световоспринимающая, светопроводящая.

Пространство между роговицей и радужкой называется передней камерой глаза.

Угол передней камеры – пространство, где радужка переходит в цилиарное тело, а роговица в склеру. В углу камеры проходит шлемов канал.

Пространство между радужкой и хрусталиком называется задней камерой глаза.

Задняя камера через зрачок сообщается с передней камерой. Камеры глаза заполне-ны прозрачной внутриглазной жидкостью. Полный обмен камерной влаги происхо-дит за 10 часов. В ее состав входит вода, минеральные соли, витамины В2, С, глюкоза, кислород, белок. Внутриглазная жидкость через шлеммов канал и венозную систему уносит из глаза продукты обмена (молочную кислоту, углекислый газ и др.) Камеры глаза сообщаются друг с другом посредством зрачка.

Хрусталик – представляет собой двояковыпуклую линзу, расположенную между радужкой и стекловидным телом. Формируется на 3-4 неделе жизни зародыша из эк-тодермы. В нем нет ни нервов, ни кровеносных и лимфатических сосудов.

Функции: преломление (сила преломления – 20,0Д), участие в акте аккомодации.

Стекловидное тело – располагается позади хрусталика и составляет 65% содержи-мого глаза. Оно прозрачное, бесцветное, гелеобразное. Сосудов и нервов в стекловид-ном теле нет. Содержит до 98% воды, мало белка и солей.

Функции: опорная ткань глазного яблока, обеспечивает свободное прохождение све-товых лучей к сетчатке, пассивно участвует в акте аккомодации, защитная (предохра-няет внутренние оболочки глаза от дислокации).

Оптическая система глаза – это роговица, влага передней и задней камер, хрус-талик и стекловидное тело. Проходя через эти образования, световые лучи преломля-ются и попадают на сетчатку.

Акт зрения – сложный нейрофизиологический акт, состоящий из 4 этапов:

1 – с помощью оптических сред глаза на сетчатке образуется перевернутое изображе-ние предметов.

2 – под воздействием световой энергии в палочках и колбочках происходит сложный фотохимический процесс, в результате которого возникает нервный импульс.

3 – импульсы, возникшие в сетчатке, проводятся по нервным волокнам к зрительным центрам коры головного мозга.

4 – в корковых центрах энергия нервного импульса превращается в зрительное ощу-щение и восприятие.

Зрительный анализатор состоит из трех основных отделов: рецепторного (в сет-чатке глаза), проводникового (включает зрительные пути и глазодвигательные нервы) и коркового (затылочная доля коры головного мозга).

Функции органа зрения.

Центральное зрение – способность органа зрения различать форму предметов в пространстве. Центральное зрение характеризуется двумя зрительными функциями: остротой зрения и цветоощущением.

Под нормальной остротой зрения понимается способность глаза различать разде-льно две светящиеся точки под углом зрения в 1 о .

Определение остроты зрения

Остроту зрения определяют у лиц разного возраста различными способами. В связи с недостаточным дифференцированием зрительно-нервного аппарата острота зрения у детей в первые дни, недели и даже месяцы жизни очень низкая. Она изменяется пос-тепенно и достигает возможного максимума в среднем к 5 годам.

Исследование зрения у детей:

1-я неделя жизни:

— прямая и содружественная реакция зрачков на свет

— общая двигательная реакция (рефлекс Пейпера) на освещение каждого глаза

— кратковременное слежение за медленно двигающимся предметом

2-я недели жизни:

— слежение с кратковременной фиксацией двигающегося предмета перед каждым гла-зом

— общая двигательная реакция в ответ на световой раздражитель каждого глаза
1-2-й месяцы жизни:

— сравнительно продолжительная бинокулярная фиксация ярких предметов, передви-гающихся перед каждым глазом

— рефлекс смыкания век на быстрое приближение к каждому глазу яркого предмета

— пищевой рефлекс – активная реакция на грудь матери

— устойчивое бинокулярное слежение и бинокулярная фиксация предметов, удаленных от глаза на разные расстояния

— узнавание матери и других близких с общей активной двигательной реакцией

— различительная реакция на разнообразные простые знакомые и незнакомые геомет-рические фигуры, игрушки

— узнавание близких лиц, знакомых животных на различном удалении от каждого глаза

— различительная реакция на картинки, рисунки, игрушки на различном удалении от глаза

— активная реакция на перемещение предметов, передвижение людей, животных, ма-шин и др.

2-4-й годы жизни: проверка зрения по детским картинкам на различных расстояниях от каждого глаза.

5-6 лет и старше: проверка остроты зрения по специальным таблицам с буквами и оп-тотипами (специальные черные знаки на белом фоне).

В детской практике удобны таблицы Е.М. Орловой с наиболее простыми и знако-мыми детям рисунками.

В России используют печатную таблицу Головина-Сивцева с аппаратом для ее ос-вещения. На таблице изображены кольца Ландольта с разрывами в четырех направле-ниях и буквы Н, К, И, Б, М, Ш, Ы различных размеров, которые соответствуют при их рассматривании с расстояния 5 м остроте зрения от 0,1 до 2,0 (расстояние 5 м считает-ся достаточным для полного расслабления аккомодации). В таблице это расстояние указано слева от каждой строки, а справа — острота зрения. Поскольку остроту зрения исследуют с расстояния 5 м, эти величины связаны следующим отношением:

где V — острота зрения; Д — расстояние, с которого данную строку различает норма-льный глаз, м.

Если исследуемый не различает с расстояния 5 м даже первой строки таблицы, не-обходимо приближать его к таблице до тех пор, пока не будет виден ясно первый ряд, и далее произвести расчет по формуле. Когда буквы неразличимы при крайнем приб-лижении их к глазу, отсутствует предметное зрение, необходимо проверить, сохрани-лось ли светоощущение в глазу. Если исследуемый определяет свет от офтальмоскопа, это говорит о сохранении восприятия света. Наводя на глаз «пучок света из различных мест» (сверху, снизу, справа, слева), проверяют, как сохранилась способность отдель-ных участков сетчатки воспринимать свет. Правильные ответы указывают на прави-льную проекцию света.

Цветоощущение – это способность глаза воспринимать световые лучи различной длины волны. Цветовое зрение, подобно остроте зрения, является функцией колбоч-кового аппарата.

Все многообразие цветовых оттенков получают путем смешивания только трех ос-новных цветов – красного, зеленого и синего. Способность правильно различать ос-новные цвета называется нормальной трихромазией.

Развитие цветового зрения происходит параллельно остроте зрения, но обнаружить его удается значительно позже. Первая более или менее отчетливая реакция на яркие красные, желтые и зеленые цвета появляется у ребенка к первому полугодию жизни, и заканчивается формирование цветового зрения к 4-5 годам. Нормальное формирова-ние цветового зрения зависит от интенсивности света.

Если новорожденного содержать в плохо освещенном помещении, то развитие цве-тоощущения задерживается. Следовательно, для правильного развития цветового зре-ния необходимо создать в комнате ребенка хорошую освещенность и с раннего воз-раста привлекать его внимание к ярким игрушкам, располагая эти игрушки на значи-тельном расстоянии от глаз (50 см и более) и меняя их цвета. При выборе игрушек сле-дует учитывать, что центральная ямка более всего чувствительна к желто-зеленой час-ти спектра и малочувствительна к синей. Гирлянды должны иметь в центре красные, желтые, оранжевые и зеленые шары, а шары, имеющие цвет с примесью синего и си-ние, необходимо помещать по краям.

Все цветовые тона образуются при смешении нескольких цветов — из семи основ-ных цветов спектра (красного, оранжевого, желтого, зеленого, голубого, синего и фи-олетового). Свет распространяется волнами различной длины, измеряемой в наномет-рах. Участок видимого глазом спектра лежит между лучами с длинами волн от 383 до 770 нм. Лучи меньшей длины (ультрафиолетовые) и большей длины (инфракрасные) не вызывают у человека зрительных ощущений. Лучи света с большой длиной волны вызывают ощущение красного, с малой длиной — синего и фиолетового цветов. Длины волн в промежутке между ними вызывают ощущение оранжевого, желтого, зе-леного и голубого цветов. Все цвета природы делятся на бесцветные или ахромати-ческие (белые, черные и все промежуточные между ними серые) и цветные или хро-матические (все остальные).

Цветовое зрение исследуют чаще всего с помощью специальных полихроматичес-ких таблиц Е.Б. Рабкина. В таблицах среди фоновых кружочков одного цвета имеются кружочки одинаковой яркости, но другого цвета составляющие для нормально видя-щего какую-либо цифру или фигуру. Лица с расстройством цветового зрения не отли-чают цвет этих кружочков от цвета кружочков фона и поэтому не могут различить предъявляемых им фигурных или цифровых изображений.

Исследование цветового зрения с помощью полихроматических таблиц необходи-мо производить при хорошем естественном освещении рассеянным светом или при ис-кусственном освещении лампами дневного света. Каждую таблицу поочередно пока-зывают в течение 5 секунд с расстояния 0,5-1 м, располагая их в строго вертикальной плоскости.

Применение таблиц Е.Б. Рабкина особенно ценно в детской практике, когда многие исследования цветового зрения вследствие малого возраста пациентов невыполнимы. Для обследования самого младшего возраста можно ограничиться тем, что ребенок во-дит кисточкой или указкой по цифре, которую он различает, но не знает, как ее наз-вать.

Читайте также:  Комплекс упражнений для коррекции зрения у детей

Периферическое зрение – совокупность пространства, видимая глазом человека при неподвижной фиксации головы и глаза. Определяется полем зрения. Исследуется поле зрения с помощью периметра Ферстера, имеющего вид дуги или полусферы.

Периметр Ферстера – дуга 180°, покрытая изнутри черной матовой краской и име-ющая на наружной поверхности деления на градусы – от 0 в центре до 90° на перифе-рии. Диск с делениями позади дуги позволяет ставить ее в положение любого из мери-дианов поля зрения.

Для исследования применяют белые объекты в виде кружков из бумаги, наклеен-ных на конце черных матовых палочек. Белыми объектами диаметром 3 мм пользуют-ся для определения наружных границ поля зрения.

Для цветной периметрии пользуются цветными (красный, зеленый и синий) объек-тами диаметром 5 мм, укрепленными на концах палочек серого цвета.

Обследуемый помещает голову на подбородник и фиксирует одним глазом (другой прикрыт заслонкой) белую точку в центре дуги. Объект ведут по дуге от периферии к центру со скоростью примерно 2 см/с. Исследуемый сообщает о появлении объекта, а исследователь замечает, какому делению дуги соответствует в это время положение объекта. Это и будет наружная граница поля зрения для данного меридиана.

Результаты исследования переносят на специальную схему полей зрения.

Определение границ поля зрения проводят по 8 (через каждые 45°) или лучше по 12 (через 30°) меридианам. Аналогичным образом проводят и цветовую периметрию.

Нормальные границы поля зрения на белый цвет: наружная граница – 90 0 , внутрен-няя – 55 0 , нижняя – 65 0 , верхняя – 45 0 .

Светоощущение – способность глаза к восприятию света. Процесс приспособле-ния глаза к различным условиям освещения называется адаптацией. Различают два ви-да адаптации: к темноте (при понижении уровня освещенности) и к свету (при повы-шении уровня освещенности). Темновая адаптация – это процесс приспособления гла-за при переходе от больших яркостей к малым (50-60 мин). Световая адаптация – это процесс приспособления глаза при переходе от малых яркостей к большим (8-10 мин)

Бинокулярное зрение – зрение двумя глазами – дает возможность воспринимать объемное изображение предметов, глубину их расположения, оценивать расстояние, на котором они находятся. При рассмотрении предмета правый глаз видит его справа, левый – слева. В то же время человек воспринимает эти два изображения как одно, только рельефное. Работая сообща, объединяя зрительную информацию, оба глаза обеспечивают стереоскопическое зрение, которое позволяет получить более точные представления о форме, объеме и глубине расположения предметов

Оно постепенно развивается у детей и достигает полного своего развития к 7-15 го-дам. Для развития бинокулярного зрения необходимо наличие:

— соответствующей иннервации всех глазных мышц

— нормального тонуса наружных мышц

— отсутствия нарушения проводящих путей и высших зрительных центров

— одинаковой остроты зрения в обоих глазах (не ниже 0,4 на каждый глаз)

— одинаковой рефракции в обоих глазах

— одинаковой величины изображений на сетчатках

— симметричного положения глазных яблок

Исследуется бинокулярное зрение с помощью 4-х точечного цветотеста, синапто-фора, а также имеется контрольный способ – опыт Соколова с «дырой в ладони».

Нарушение бинокулярного зрения отмечается при любом виде косоглазия.

Анатомия и физиология органов зрения и вспомогательного аппарата

Значение органа зрения для животных огромно, он позволяет им свободно ориентироваться в пространстве, помогает добывать пищу; передвигаться, а в случае нападения обороняться. Заболевания же глаз могут привести к частичной или полной потере зрения, преждевременной выбраковке и даже падежу живот­ных. Кроме того снижаются прирост массы, продуктивность, требуются допол­нительные затраты на содержание таких животных, которые не безопасны и для человека.

В связи с этим важное значение при­обретает всестороннее овладение теоретическими и практическими навыками по офтальмологии у животных. Однако все это возможно только при условии четкого представления анатомо-гистологического строения и физиологических особенностей органа зрения у животных.

В начале изучаются защитно-приспособительный аппарат глаза, костная глазная переорбита , фасции орбиты, веки, слезный аппарат, глазной жир, мышцы. Костная глазница. Представляет собой полость, в которой заключено глазное яблоко. Она образована лобной, скуловой, слезной и височной костями. У сви­ней, собак и кошек латеральная часть глазницы образована орбитальной связкой, что способствует очень частому выпадению глазного яблока у этих животных.

Изнутри глазница выстлана плотной фиброзно-эластической тканью, так на­зываемой периорбитой. Она имеет воронкообразную форму, обладает значитель­ной прочностью и малой податливостью.

Внутри периорбиты находятся глазное яблоко, которое окружают три фасции: поверхностная, глубокая и тенонова. Поверхностная тянется от отверстия зри­тельного канала к векам, на пути давая отростки в виде перегородок к глубокой фасции, которая образует влагалища мышц глаза. Тенонова фасция покры­вает глазное яблоко от области лимба до твердой оболочки зрительного нерва. Между теноновой фасцией и склерон имеется теноново (эписклеральное) про­странство.

Веки: У всех домашних животных имеется три века: верхнее, нижнее и третье, лежащее в медиальном углу глаза и называемое мигательной перепонкой.

Верхнее и нижнее веки защищают глазное яблоко от механических повреждений и являются кожно-мышечными образованиями. Их основу составляет «хрящ» век, состоящий из плотной волокнистой соединительной ткани. Передняя повер­хность век покрыта тонкой кожей, под которой лежит круговая мышца век. Она имеет циркулярное расположение волокон, что необходимо учитывать при выпол­нении хирургических операций. Кроме кругового мускула имеется также наруж­ный и внутренний подниматель верхнего века и опускатель нижнего века.

Задняя поверхность век покрыта коньюнктивой, которая переходит на глаз. нос яблоко и покрывает склеру. Конъюнктива богата кровеносными сосудами, нервами.

На свободном крае век имеется два ребра—наружное, на котором расположе­ны ресницы, на внутреннее, где открываются отверстия мейбомиевых желез, заложенных в толще век.

Третье веко представляет собой складку конъюнктивы и располагается в медиальном углу глаза. В нем заключены лимфатические фоликулы (через которые всасываются лекарственные вещества), эластический гиалиновый хрящ и слез­ная гардерова железа. Слезный аппарат состоит из слезных желез верхнего и третьего века и слезовыводящих путей (слезных точек, слезных канальцев, слезного мешка и пезно-носового протока).

Глазной жир одевает снаружи периорбиту (экстраорбитальное жировое тело) и располагается внутри периорбиты между мускулами, сосудами и нервами (интраорбитальное жировое тело). Он способствует легкому скольжению глазного яблока и предохраняет его от перегревания.

Двигательный аппарат глаза составляют 7 мускулов: 4 прямых, 2 косых и оттягиватель глазного яблока. Прямые мышцы поворачивают глаз в сторону, дор­сальная косая мышца поворачивает глаз вверх и наружу, а венгральная косая вниз и внутрь.

Изучив защитно-приспособительный аппарат, студенты приступают к изучению строения глазного яблока, используя таблицы и разборную модель глаза. Глазное яблоко — парный орган, шарообразной формы, расположенный в пе­реднем отделе костной глазницы и состоит из 3-х оболочек: фиброзной, сосу­дистой и сетчатой.

— наружная — фиброзная, обуславливает форму глаза, поддерживает опреде­ленный тургор, выполняет защитную функцию и служит местом прикрепления глазодвигательных мыши. Она делится на два неравных отдела — роговую и белочную оболочки;

— роговая оболочка или роговица представляет собой передний отдел фиброз­ной капсулы и занимает 1/5 ее протяженности. По краю роговины распо­ложен полупрозрачный ободок — лимб. Роговица совершенно прозрачная. гладкая, блестящая, слегка увлажненная. В ней сильно разбита сеть нер­вных окончаний тройничного нерпа, полностью отсутствуют кровеносные сосуды. Питание ее осуществляется за счет сосудов склеры — и внутриглазной жидкости.

Гистологически в роговице различают 5 слоев:

Многослойный неороговевающий эпнтелей, боуменова оболочка, стрема, деснеметова оболочка и эндотелий. Через роговицу в глаз проникают лучи света и она является самой мощной оптической средой глаза.

Белочная оболочка или склера — непрозрачная, плотная, занимает большую часть окружности глазного яблока (4/5) и состоит из соединительно-тканных фи­брозных волокон. Она бедна сосудами и нервными окончаниями. Средняя сосудистая оболочка или сосудистый тракт — состоит из трех отделов: радужкой оболочки, цилиарного или (ресничного) и собственно сосудистой оболочки.

Радужная оболочка — передняя часть сосудистого тракта,. представляющая со­бой пигментированную круглую пластинку. В центре находится зрачок, форма которого неодинакова у разных видов животных. Радужная оболочка регулирует поступления света в глаз, обеспечивает резкость изображения предметов, находящихся на разном удалении от животного. В связи с этим, величина зрачка изменяется в зависимости от освещенности и удаленности от глаз рассмат­риваемого объекта.

Ресничное (цилиарное) тело средняя часть сосудистого тракта и расположена между радужной и собственно сосудистой оболочками. Ресничное тело содержит ресничный мускул, к которому при помощи цинновой связки прикрепляется хрус­талик. При сокращении ресничного мускула ресничные отростки придвигаются к хрусталику, натяжение цинновой связки ослабевает, хрусталик округляется, глаз приспосабливается к восприятию предметов на близком расстоянии и нао­борот. Ресничное тело продуцирует внутриглазную жидкость, регулирует внут­риглазное давление.

Собственно сосудистая оболочка обеспечивает питание внутренних частей глаза и лежит между склерой и внутренней оболочкой (сетчаткой). В ней дорсально от зрительного нерва находится отражательная перепонка фиброзного строения (тапетум). В зависимости от окраски таиетум делят на два участка: светлый— тапетум люцидум и темный — тапетум нигрум.

Сетчатая оболочка выстилает дно глаза, состоит из нервной ткани и является как бы продолжением центральной нервной системы, выдвинутой на периферию. На всем протяжении она удерживает стекловидным телом и кренится только в двух местах — вокруг зрительного нерва и по зубчатой линии, где заканчива­ется оптическая зона сетчатки.

Гистологически в сетчатке различают 10 слоев, которые представляют собой сцепления трех нейронов: наружного светочувствительного слоя, образованного палочками и колбочками, среднего стоя биполярных клеток и внутреннего слоя мультиполярных клеток. Аксоны мультиполярных клеток собираясь со всей по­верхности сетчатки в пучок, формируют зрительный нерв. Место выхода зритель­ного нерва из сетчатки носит название диска зрительного нерва. Здесь нет палочек и колбочек, поэтому оно называется слепым пятном.

Содержимое глазного яблока состоит из влаги передней и задней камер, хрусталика и стекловидного тела. Вместе с роговицей они составляют оптическую систему глаза. Их значение — преломлять лучи света и способствовать получению на сетчатке отчетливого изображения предметов.

Для более ясного представления строения глазною яблока студенты присту­пают к препаровке влажного препарата глаза. Для этого с глазного яблока необходимо удалить остатки мышц и коньюнктиву. Скальпелем проколоть рого­вицу по линии лимбо, через образовавшееся отверстие в переднюю камеру глаза ввести браншу ножниц и вырезать роговицу строго по лимбу. После этою осматривают и изучают роговицу, радужную оболочку, переднюю камеру, зрачок, а также переднюю поверхность хрусталика.

Затем двумя меридианными разрезами (от лимба к заднему полюсу) разрезают все оболочки глазного яблока на две половинки. Удаляют и осматривают стекловидное тело, изучают состояние задней поверхности радужной оболочки, заднюю камеру глаза, цилиарное тело, хрусталик, цинновую связку, сетчатку, их связь и взаимное расположение.

Анатомия и физиология органа зрения

АНАТОМИЯ И ФИЗИОЛОГИЯ ОРГАНА ЗРЕНИЯ

Из всех органов чувств человека глаз всегда признавался наилучшим даром и чудеснейшим произведением творческой силы природы. Поэты воспевали его, ораторы восхваляли, философы прославляли его как мерило, указывающее на то, к чему способны органические силы, а физики пытались подражать ему как непостижимому образу оптических приборов. Г. Гельмгольц

Не глазом, а посредством глаза смотреть на мир умеет разум Авиценна

Первый шаг в понимании глаукомы — это ознакомление со строением глаза и его функциями (рис. 1).

Глаз (глазное яблоко, Bulbus oculi) имеет почти правильную округлую форму, размер его передне-задней оси примерно 24 мм, весит около 7 г и анатомически состоит из трех оболочек (наружной — фиброзной, средней — сосудистой, внутренней — сетчатки) и трех прозрачных сред (внутриглазной жидкости, хрусталика и стекловидного тела).

Наружная плотная фиброзная оболочка состоит из задней, большей части — склеры, выполняющей скелетную, определяющую и обеспечивающую форму глаза функцию. Передняя, меньшая ее часть — роговица — прозрачна, менее плотная, не имеет сосудов, в ней разветвляется огромное количество нервов. Диаметр ее — 10-11 мм. Являясь сильной оптической линзой, она пропускает и преломляет лучи, а также выполняет важные защитные функции. За роговицей располагается передняя камера, заполненная прозрачной внутриглазной жидкостью.

К склере изнутри глаза прилегает средняя оболочка — сосудистый, или увеальный тракт, состоящий из трех отделов.

Первый, самый передний, видимый через роговицу, — радужка — имеет отверстие — зрачок. Радужка является как бы дном передней камеры. С помощью двух мышц радужки зрачок суживается и расширяется, автоматически регулируя величину светового потока, входящего в глаз, в зависимости от освещения. Цвет радужки зависит от различного содержания в ней пигмента: при малом его количестве глаза светлые (серые, голубые, зеленоватые), если его много — темные (карие). Большое количество радиально и циркулярно расположенных сосудов радужки, окутанных нежной соединительной тканью, образует своеобразный ее рисунок, рельеф поверхности.

Второй, средний отдел — цилиарное тело — имеет вид кольца шириной до 6-7 мм, примыкающего к радужке и обычно недоступного визуальному наблюдению. В цилиарном теле различают две части: передняя отростчатая, в толще которой лежит цилиарная мышца, при сокращении ее расслабляются тонкие нити цинновой связки, удерживающей в глазу хрусталик, что обеспечивает акт аккомодации. Около 70 отростков цилиарного тела, содержащих капиллярные петли и покрытых двумя слоями эпителиальных клеток, продуцируют внутриглазную жидкость. Задняя, плоская часть цилиарного тела является как бы переходной зоной между цилиарным телом и собственно сосудистой оболочкой.

Читайте также:  Юноша с дефектом зрения ищет девушку приятную на ощупь

Третий отдел — собственно сосудистая оболочка, или хориоидея — занимает заднюю половину глазного яблока, состоит из большого количества сосудов, располагается между склерой и сетчаткой, соответствуя ее оптической (обеспечивающей зрительную функцию) части.

Внутренняя оболочка глаза — сетчатка — представляет собой тонкую (0,1-0,3 мм), прозрачную пленку: оптическая (зрительная) ее часть покрывает хориоидвю от плоской части цилиарного тела до места выхода зрительного нерва из глаза, неоптическая (слепая) — цилиарное тело и радужку, слегка выступая по краю зрачка. Зрительная часть сетчатки — это сложно организованная сеть из трех слоев нейронов. Функция сетчатки как специфического зрительного рецептора тесно связана с сосудистой оболочкой (хори-оидеей). Для зрительного акта необходим распад зрительного вещества (пурпура) под влиянием света. В здоровых глазах зрительный пурпур восстанавливается немедленно. Этот сложный фотохимический процесс восстановления зрительных веществ обусловлен взаимодействием сетчатки с хори-оидеей. Сетчатка состоит из нервных клеток, образующих три нейрона.

В первом нейроне, обращенным к хориоидее, находятся светочувствительные клетки, фоторецепторы — палочки и колбочки, в которых под влиянием света происходят фотохимические процессы, трансформирующиеся в нервный импульс. Он проходит второй, третий нейрон, зрительный нерв и по зрительным путям попадает в подкорковые центры и далее в кору затылочной доли больших полушарий мозга, вызывая зрительные ощущения.

Палочки в сетчатке расположены преимущественно по периферии и отвечают за светоощущение, сумеречное и периферическое зрение. Колбочки локализуются в центральных отделах сетчатки, в условиях достаточного освещения формируя цветоощущение и центральное зрение. Наивысшую остроту зрения обеспечивает область желтого пятна и центральная ямка сетчатки.

Зрительный нерв формируется нервными волокнами — длинными отростками ганглиозных клеток сетчатки (3-й нейрон), которые, собираясь в отдельные пучки, выходят через мелкие отверстия в задней части склеры (решетчатую пластинку). Место выхода нерва из глаза называется диском зрительного нерва (ДЗН).

В центре диска зрительного нерва образуется небольшое углубление — экскавация, которая не превышает 0,2-0,3 диаметра диска (Э/Д). В центре экскавации проходят центральная артерия и вена сетчатки. В норме диск зрительного нерва имеет четкие границы, бледно-розовую окраску, округлую или слегка овальную форму.

Хрусталик — вторая (после роговицы) преломляющая среда оптической системы глаза, располагается за радужной оболочкой и лежит в ямке стекловидного тела.

Стекловидное тело занимает большую заднюю часть полости глаза и состоит из прозрачных волокон и гелеподобного вещества. Обеспечивает сохранение формы и объема глаза.

Оптическая система глаза состоит из роговицы, влаги передней камеры, хрусталика и стекловидного тела. Лучи света проходят прозрачные среды глаза, преломляются на поверхностях основных линз — роговицы и хрусталика и, фокусируясь на сетчатке, «рисуют» на ней изображение предметов внешнего мира (рис.2). Зрительный акт начинается с преобразования изображения фоторецепторами в нервные импульсы, которые после обработки нейронами сетчатки передаются по зрительным нервам в высшие отделы зрительного анализатора. Таким образом, зрение можно определить как субъективное восприятие объективного мира посредством света с помощью зрительной системы.

Выделяют следующие основные зрительные функции:центральное зрение (характеризуется остротой зрения) — способность глаза четко различать детали предметов, оценивается по таблицам со специальными знаками;

периферическое зрение (характеризуется полем зрения) — способность глаза воспринимать объем пространства при неподвижном положении глаза. Исследуется с помощью периметра, кампиметра, анализатора поля зрения и др;

цветовое зрение — это способность глаза воспринимать цвета и различать цветовые оттенки. Исследуется с помощью цветовых таблиц, тестов и аномалоскопов;

светоощущение (темновая адаптация) — способность глаза воспринимать минимальное (пороговое) количество света. Исследуется адаптометром.

Полноценное функционирование органа зрения обеспечивается также вспомогательным аппаратом. Он включает в себя ткани орбиты (глазницы), веки и слезные органы, выполняющие защитную функцию. Движения каждого глаза осуществляются шестью наружными глазодвигательными мышцами.

Зрительный анализатор состоит из глазного яблока, строение которого схематично представлено на рис. 1, проводящих путей и зрительной коры головного мозга.

Рис.1.Схема строения глаза

9-диск зрительного нерва,

Вокруг глаза расположены три пары глазодвигательных мышц. Одна пара поворачивает глаз влево и вправо, другая — вверх и вниз, а третья вращает его относительно оптической оси. Сами глазодвигательные мышцы управляются сигналами, поступающими из мозга. Эти три пары мышц служат исполнительными органами, обеспечивающими автоматическое слежение, благодаря чему глаз может легко сопровождать взором всякий движущийся вблизи и вдали объект (рис. 2).

4-мышца, поднимающая верхнее веко;

5-нижняя косая мышца;

6-нижняя прямая мышца.

Глаз, глазное яблоко имеет почти шаровидную форму примерно 2,5 см в диаметре. Он состоит из нескольких оболочек, из них три — основные:

склера — внешняя оболочка,

сосудистая оболочка — средняя,

Склера имеет белый цвет с молочным отливом, кроме передней ее части, которая прозрачна и называется роговицей. Через роговицу свет поступает в глаз. Сосудистая оболочка, средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок. Функция этой оболочки — ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением — при низкой. За радужной оболочкой расположен хрусталик, похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов. Достигается это следующим образом (рис.3).

Рис.3.Схематическое представление механизма аккомодации

справа-фокусировка на близкие предметы.

Хрусталик в глазу «подвешен» на тонких радиальных нитях, которые охватывают его круговым поясом. Наружные концы этих нитей прикрепляются к ресничной мышце. Когда эта мышца расслаблена (в случае фокусировки взора Рис.5.

Ход лучей при различных видах клинической рефракции глаза

на удаленном предмете), то кольцо, образуемое ее телом, имеет большой диаметр, нити, держащие хрусталик, натянуты, и его кривизна, а следовательно и преломляющая сила, минимальна. Когда же ресничная мышца напрягается (при рассматривании близко расположенного объекта), ее кольцо сужается, нити расслабляются, и хрусталик становится более выпуклым и, следовательно, более сильно преломляющим. Это свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется аккомодацией.

Лучи света фокусируются оптической системой глаза на особом рецепторном (воспринимающем) аппарате — сетчатой оболочке. Сетчатка глаза — передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование. В сетчатке позвоночных обычно различают 10 слоев нервных элементов, связанных между собой не только структурно-морфологически, но и функционально. Главным слоем сетчатки является тонкий слой светочувствительных клеток — фоторецепторов. Они бывают двух видов: отвечающие на слабый засвет (палочки) и отвечающие на сильный засвет (колбочки). Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им обнаруживаются предметы на периферии поля зрения, в том числе при низкой освещенности. Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом «желтом пятне». Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. «Желтым пятном» человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное, цветное зрение, при помощи которого воспринимаются цвета окружающего нас мира.

От каждой светочувствительной клетки отходит нервное волокно, соединяющее рецепторы с центральной нервной системой. При этом каждую колбочку соединяет свое отдельное волокно, тогда как точно такое же волокно «обслуживает» целую группу палочек.

Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки — на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных «помех» в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы. Нервные волокна со всей сетчатки собираются в зрительный нерв в особой области сетчатки — «слепом пятне». Оно расположено в том месте, где зрительный нерв выходит из глаза, и все, что попадает на эту область, исчезает из поля зрения человека. Зрительные нервы правой и левой стороны перекрещиваются, причем у человека и высших обезьян перекрещиваются лишь половина волокон каждого зрительного нерва. В конечном счете вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию — кору, где и происходит формирование зрительного образа (рис. 4).

Окружающий нас мир мы видим ясно, когда все отделы зрительного анализатора «работают» гармонично и без помех. Для того, чтобы изображение было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза. Различные нарушения преломления световых лучей в оптической системе глаза, приводящие к расфокусировке изображения на сетчатке, называются аномалиями рефракции (аметропиями). К ним относятся близорукость (миопия), дальнозоркость (гиперметропия), возрастная дальнозоркость (пресбиопия) и астигматизм (рис. 5).

Рис.4.Схема строения зрительного анализатора

2-неперекрещенные волокна зрительного нерва,

3-перекрещенные волокна зрительного нерва,

5-наружнее коленчатое тело,

Рис.5.Ход лучей при различных видах клинической рефракции глаза

Близорукость (миопия) — большей частью наследственно обусловленное заболевание, когда в период интенсивной зрительной нагрузки (учебы в школе, институте) вследствие слабости цилиарной мышцы, нарушения кровообращения в глазу происходит растяжение плотной оболочки глазного яблока (склеры) в передне-заднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Вследствие такого удлинения продольной оси глаза изображения предметов фокусируется не на самой сетчатке, а перед ней, и человек стремится все приблизить к глазам, пользуется очками с рассеивающими («минусовыми») линзами для уменьшения преломляющей силы хрусталика. Близорукость неприятна не тем, что требует ношения очков, а тем, что при прогрессировании заболевания возникают дистрофические очаги в оболочках глаза, приводящие к необратимой, некорригируемой очками потере зрения. Чтобы этого не допустить, нужно соединить опыт и знания врача-окулиста с настойчивостью и волей пациента в вопросах рационального распределения зрительной нагрузки, периодического самоконтроля за состоянием своих зрительных функций.

Дальнозоркость. В отличие от близорукости, это не приобретенное, а врожденное состояние — особенность строения глазного яблока: это либо короткий глаз, либо глаз со слабой оптикой. Лучи при этом состоянии собираются за сетчаткой. Для того, чтобы такой глаз хорошо видел, перед ним нужно поместить собирающие — «плюсовые» очки. Это состояние может долго «скрываться» и проявиться в 20-30 лет и более позднем возрасте; все зависит от резервов глаза и степени дальнозоркости.

Правильный режим зрительного труда и систематические тренировки зрения позволят значительно отодвинуть срок проявления дальнозоркости и пользования очками. Пресбиопия (возрастная дальнозоркость). С возрастом сила аккомодации постепенно падает, за счет уменьшения эластичности хрусталика и цилиарной мышцы. Наступает состояние, когда мышца уже неспособна к максимальному сокращению, а хрусталик, потеряв эластичность, не может принять максимально шаровидную форму — в результате человек теряет возможность различать мелкие, близко расположенные предметы, стремится отодвинуть книгу или газету от глаз (чтобы облегчить работу цилиарных мышц). Для коррекции этого состояния назначаются очки для близи с «плюсовыми» стеклами. При систематическом соблюдении режима зрительного труда, активном занятии тренировкой глаз можно значительно отодвинуть время пользования очками для близи на многие годы.

Астигматизм — особый вид оптического строения глаза. Явление это врожденного или, большей частью приобретенного характера. Обусловлен астигматизм чаще всего неправильностью кривизны роговицы; передняя поверхность ее при астигматизме представляет собой не поверхность шара, где все радиусы равны, а отрезок вращающегося эллипсоида, где каждый радиус имеет свою длину. Поэтому каждый меридиан имеет особое преломление, отличающееся от рядом лежащего меридиана. Признаки болезни могут быть связаны с понижением зрения как вдаль, так и вблизь, снижением зрительной работоспособности, быстрой утомляемостью и болезненными ощущениями при работе на близком расстоянии.

Итак, мы видим, что наш зрительный анализатор, наши глаза — это исключительно сложный и удивительный дар природы. Весьма упрощенно можно сказать, что глаз человека — это, в конечном счете, прибор для приема и переработке световой информации и его ближайшим техническим аналогом является цифровая видеокамера. Относитесь к своим глазам бережно и внимательно, так же бережно, как Вы относитесь к своим дорогим фото- и видеоустройствам.

Источники:
  • http://kursak.net/lekciya-1-anatomiya-fiziologiya-i-funkcii-zritelnogo-analizatora/
  • http://veterinarua.ru/chastnaya-khirurgiya/815-anatomiya-i-fiziologiya-organa-zreniya-i-ego-vspomogatelnogo-ap-parata-u-zhivotnykh.html
  • http://studfiles.net/preview/1564150/