Меню Рубрики

Активность калия с точки зрения строения атома

Относится к элементам s — семейства. Металл. Элементы-металлы, входящие в эту группу, носят общее название щелочных. Обозначение – K. Порядковый номер – 19. Относительная атомная масса – 39,102 а.е.м.

Электронное строение атома калия

Атом калия состоит из положительно заряженного ядра (+19), внутри которого есть 19 протонов и 20 нейтронов, а вокруг, по 4-м орбитам движутся 19 электронов.

Рис.1. Схематическое строение атома калия.

Распределение электронов по орбиталям выглядит следующим образом:

Внешний энергетический уровень атома калия содержит 1 электрон, который является валентным. Степень окисления калия равна +1. Энергетическая диаграмма основного состояния принимает следующий вид:

Возбужденного состояния, несмотря на наличие вакантных 3p— и 3d-орбиталей нет.

Примеры решения задач

Задание Атом элемента имеет следующую электронную конфигурацию 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 . Укажите: а) заряд ядра; б) число завершенных энергетических уровней в электронной оболочке этого атома; в) максимально возможную степень окисления; г) валентность атома в соединении с водородом.
Решение Для того, чтобы ответить на поставленные вопросы, сначала нужно определить общее число электронов в атоме химического элемента. Это можно сделать, сложив все электроны, имеющиеся в атоме, не учитывая их распределения по энергетическим уровням:

Это мышьяк (As). Теперь ответим на вопросы:

а) заряд ядра равен +33;

б) атом имеет четыре уровня, из которых завершенными являются три;

в) запишем энергетическую диаграмму для валентных электронов атома мышьяка в основном состоянии.

Мышьяк способен переходит в возбужденное состояние: электроны s-подуровня распариваются и один из них переходит на вакантную d-орбиталь.

Пять неспаренных электронов свидетельствуют о том, что максимально возможная степень окисления мышьяка равна +5;

г) Валентность мышьяка в соединении с водородом равна III (AsH3).

Задание Напишите электронные формулы атомов: а) третьегоp-элемента четвертого периода; б) второго s-элемента пятого периода; в) девятого d-элемента четвертого периода.
Ответ а) Третийp-элемент четвертого периода – это мышьяк 33 As.

б) Второй s-элемент пятого периода – это стронций 38 Sr.

в) Девятый d-элемент четвертого периода – это медь 29 Cu.

Характеристика калия. Строение калия. Соединения калия

В этой статье будет дана характеристика калия с точки зрения физики и химии. Первая из этих наук изучает механические и внешние свойства веществ. А вторая — их взаимодействие друг с другом — это химия. Калий — девятнадцатый по счету элемент в таблице Менделеева. Он принадлежит к щелочным металлам. В этой статье будет рассмотрена и электронная формула калия, и его поведение с другими веществами и т. д. Это один из наиболее активных металлов. Наука, которая занимается изучением этого и других элементов — химия. 8 класс предусматривает изучение неорганических веществ и их свойств. Поэтому данная статья будет полезна школьникам. Итак, начнем.

Характеристика калия с точки зрения физики

Это простое вещество, которое при нормальных условиях находится в твердом агрегатном состоянии. Температура плавления составляет шестьдесят три градуса по шкале Цельсия. Закипает же данный металл, когда температура достигает семисот шестидесяти одного градуса по Цельсию. Рассматриваемое вещество обладает серебристо-белой окраской. Имеет металлический блеск.

Калий и химия

Начнем с того, что калий — химический элемент, который обладает очень высокой химической активностью. Даже хранить его на открытом воздухе нельзя, так как он моментально начинает реагировать с окружающими его веществами. Калий — химический элемент, который относится к первой группе и четвертому периоду таблицы Менделеева. Он обладает всеми свойствами, которые характерны для металлов.

Взаимодействие с простыми веществами

К ним относятся: кислород, азот, сера, фосфор, галогены (йод, фтор, хлор, бром). По порядку рассмотрим взаимодействие калия с каждым из них. Взаимодействие с кислородом называется окислением. В течение данной химической реакции расходуется калий и оксиген в молярном соотношении четыре части к одной, в результате чего образуется оксид рассматриваемого металла в количестве двух частей. Данное взаимодействие можно выразить при помощи следующего уравнения реакции: 4К + О2 = 2К2О. При горении калия можно наблюдать ярко-фиолетовое пламя.

Взаимодействие со сложными веществами

Характеристика калия с точки зрения химии предусматривает рассмотрение и этой темы. К сложным веществам, с которыми способен реагировать калий, относятся вода, кислоты, соли, оксиды. Со всеми ними рассматриваемый металл реагирует по-разному.

Калий и вода

Данный химический элемент бурно реагирует с ней. При этом образуется гидроксид, а также водород. Если взять по два моля калия и воды, то получим столько же гидроксида калия и один моль водорода. Данное химическое взаимодействие можно выразить с помощью следующего уравнения: 2К + 2Н2О = 2КОН = Н2.

Реакции с кислотами

Так как калий — активный металл, он с легкостью вытесняет атомы гидрогена из их соединений. Примером может быть реакция, которая происходит между рассматриваемым веществом и соляной кислотой. Для ее проведения нужно взять два моля калия, а также кислоту в том же количестве. В результате образуется хлорид калия — два моля и водород — один моль. Этот процесс можно записать таким уравнением: 2К + 2НСІ = 2КСІ + Н2.

Калий и оксиды

С данной группой неорганических веществ рассматриваемый металл реагирует только при значительном нагревании. Если атом металла, входящего в состав оксида, пассивнее того, о котором мы говорим в данной статье, происходит, по сути, реакция обмена. Например, если взять два моля калия и один моль оксида купрума, то в результате их взаимодействия можно получить по одному молю оксида рассматриваемого химического элемента и чистый купрум. Это можно показать в виде такого уравнения: 2К + CuO = К2О + Cu. Вот где проявляются сильные восстановительные свойства калия.

Взаимодействие с основаниями

Калий способен реагировать с гидроксидами металлов, которые находятся правее него в электрохимическом ряду активности. В таком случае также проявляются его восстановительные свойства. Например, если взять два моля калия и один моль гидроксида бария, то в результате реакции замещения мы получим такие вещества, как гидроксид калия в количестве два моля и чистый барий (один моль) — он выпадет в осадок. Представленное химическое взаимодействие можно отобразить в виде следующего уравнения: 2К + Ba(OH)2 = 2КОН + Ba.

Реакции с солями

В данном случае калий все так же проявляет свои свойства как сильный восстановитель. Замещая атомы химически более пассивных элементов, он позволяет получить чистый металл. Например, если добавить к хлориду алюминия в количестве два моля три моля калия, то в результате данной реакции получим три моля хлорида калия и два моля алюминия. Выразить данный процесс с помощью уравнения можно следующим образом: 3К + 2АІСІ3 = 3КСІ2 + 2АІ.

Реакции с жирами

Если добавить калий к какому-либо органическому веществу данной группы, он также вытеснит один из атомов гидрогена. Например, при смешивании стеарина с рассматриваемым металлом образуется стеарат калия и водород. Полученное вещество применяется для изготовления жидкого мыла. На этом характеристика калия и его взаимодействий с другими веществами заканчивается.

Использование калия и его соединений

Как и все металлы, рассматриваемый в данной статье необходим для многих процессов в промышленности. Основное применение калия происходит в химической отрасли. Благодаря своей высокой химической активности, ярко выраженным щелочнометаллическим и восстановительным свойствам, он применяется в качестве реагента для многих взаимодействий и получения разнообразных веществ. Кроме того, сплавы с содержанием калия используются как теплоносители в ядерных реакторах. Также рассматриваемый в данной статье металл находит свое применение в электротехнике. Помимо всего вышеперечисленного, он является одним из главных компонентов удобрений для растений. Кроме того, его соединения применяются в самых разнообразных отраслях промышленности. Так, в добыче золота используется цианид калия, который служит реагентом для выделения ценных металлов из руд. В производстве стекла применяется карбонат калия. Фосфаты рассматриваемого химического элемента являются компонентами всевозможных чистящих средств и порошков. В спичках присутствует хлорат данного металла. В изготовлении пленок для старых фотоаппаратов использовался бромид рассматриваемого элемента. Как вы уже знаете, добыть его возможно путем бромирования калия в условии высокой температуры. В медицине используется хлорид данного химического элемента. В мыловарении — стеарат и другие производные от жиров.

Получение рассматриваемого металла

В наше время калий добывают в лабораториях двумя основными способами. Первый — восстановление его из гидроксида с помощью натрия, который химически еще более активен, чем калий. А второй — получение его из хлорида, тоже с помощью натрия. Если добавить к одному молю гидроксида калия столько же натрия, образуется по одному молю щелочи натрия и чистого калия. Уравнение данной реакции выглядит следующим образом: КОН + Na = NaOH + К. Для проведения реакции второго типа нужно смешать хлорид рассматриваемого металла и натрий в равных молярных пропорциях. В результате этого образуются такие вещества, как кухонная соль и калий в одинаковом соотношении. Выразить данное химическое взаимодействие можно с помощью такого уравнения реакции: КСІ + Na = NaCl + К.

Строение калия

Атом данного химического элемента, как и всех остальных, состоит из ядра, в котором содержатся протоны и нейтроны, а также электронов, которые вращаются вокруг него. Количество электронов всегда равно количеству протонов, которые находятся внутри ядра. Если же какой-либо электрон отсоединился или присоединился к атому, то он уже перестает быть нейтральным и превращается в ион. Они бывают двух видов: катионы и анионы. Первые обладают положительным зарядом, а вторые — отрицательным. Если к атому присоединился электрон, то он превращается в анион, если же какой-либо из электронов покинул свою орбиту, нейтральный атом становится катионом. Так как порядковый номер калия, согласно таблице Менделеева, девятнадцать, то и протонов в ядре данного химического элемента находится столько же. Поэтому можно сделать вывод, что и электронов вокруг ядра расположено девятнадцать. Количество протонов, которые содержатся в структуре атома, можно определить, отняв от атомной массы порядковый номер химического элемента. Так можно сделать вывод, что в ядре калия находится двадцать протонов. Так как рассматриваемый в этой статье металл принадлежит к четвертому периоду, он имеет четыре орбиты, на которых равномерно располагаются электроны, которые все время находятся в движении. Схема калия выглядит следующим образом: на первой орбите расположены два электрона, на второй — восемь; также как и на третьей, на последней, четвертой, орбите вращается всего один электрон. Этим и объясняется высокий уровень химической активности данного металла — его последняя орбита не заполнена полностью, поэтому он стремится соединиться с какими-либо другими атомами, в результате чего их электроны последних орбит станут общими.

Где можно встретить данный элемент в природе?

Так как он обладает чрезвычайно высокой химической активностью, то на планете он нигде не встречается в чистом виде. Его можно увидеть только в составе разнообразных соединений. Массовая доля калия в земной коре составляет 2,4 процента. Самые распространенные минералы, в состав которых входит калий, — это сальвинит и карналлит. Первый обладает следующей химической формулой: NaCl•KCl. Он обладает пестрой расцветкой и состоит из множества кристаллов разнообразной окраски. В зависимости от соотношения хлорида калия и натрия, а также от наличия примесей, он может содержать красные, синие, розовые, оранжевые составляющие. Второй минерал — карналлит — выглядит как прозрачные, нежно-голубые, светло-розовые либо бледно-желтые кристаллы. Его химическая формула выглядит так: KCl•MgCl2•6Н2О. Он является кристаллогидратом.

Роль калия в организме, симптомы недостатка и избытка

Он вместе с натрием поддерживает водно-солевой баланс клетки. Также он участвует в передаче между мембранами нервного импульса. Кроме того, он регулирует кислотно-щелочной баланс в клетке и во всем организме в целом. Он принимает участие в процессах обмена веществ, противодействует возникновению отеков, входит в состав цитоплазмы — около пятидесяти ее процентов — соли рассматриваемого металла. Главными признаками того, что организму не хватает калия, является отечность, возникновение такого заболевания, как водянка, раздражительность и нарушения в работе нервной системы, заторможенность реакции и ухудшение памяти.

Еда с высоким содержанием рассматриваемого микроэлемента

Прежде всего, это орехи, такие как кешью, грецкие, фундук, арахис, миндаль. Также большое его количество находится в картошке. Кроме того, калий содержится в сухофруктах, таких как изюм, курага, чернослив. Данным элементом богаты и кедровые орешки. Также высокая его концентрация наблюдается в бобовых: фасоли, горохе, чечевице. Морская капуста также богата данным химическим элементом. Еще одними продуктами, содержащими данный элемент в большом количестве, являются зеленый чай и какао. Кроме того, в высокой концентрации он находится и во многих фруктах, таких как авокадо, бананы, персики, апельсины, грейпфруты, яблоки. Многие крупы богаты рассматриваемым микроэлементом. Это прежде всего перловка, а также пшеничная и гречневая крупа. В петрушке и брюссельской капусте тоже есть много калия. Кроме того, он содержится в моркови и дыне. Лук и чеснок обладают немалым количеством рассматриваемого химического элемента. Куриные яйца, молоко и сыр также отличаются высоким содержанием в них калия. Суточная норма данного химического элемента для среднестатистического человека составляет от трех до пяти граммов.

Читайте также:  В чем состоит преимущество зрения двумя глазами

Заключение

Прочитав эту статью, можно сделать вывод, что калий является чрезвычайно важным химическим элементом. Он необходим для синтезирования многих соединений в химической промышленности. Кроме того, используется и во многих других отраслях. Также он очень важен для организма человека, поэтому должен регулярно и в необходимом количестве поступать туда с едой.

Эволюция теоретических проблем химии

С точки зрения теории строения атома, элементы в периодической системе расположены в последовательности увеличения зарядов их ядер, Внутри каждого периода по мере возрастания зарядов ядер элементов последовательно изменяется структура внешних электронных уровней. С этим связан переход элементов от металлов к неметаллам. В периодах слева направо, с увеличением зарядов ядер элементов, усиливается притяжение электронов к ядру и происходит сжатие атома, т. е. уменьшение атомного радиуса элементов. Поэтому в начале каждого периода располагаются элементы, имеющие больший атомный радиус и меньшее число электронов на внешнем электронном слое. Чем больше атомный радиус, тем слабее притяжение электронов внешнего слоя и тем легче элементу отдавать электроны. Такая структура характерна для элементов — металлов, которые сравнительно легко отдают валентные электроны, но не могут принимать их дополнительно для достройки электронных оболочек внешнего уровня.

С увеличением атомного номера элементов увеличивается заряд ядра и число электронов во внешнем слое и уменьшается легкость отдачи электронов с этого слоя. Таким образом, внутри каждого периода с увеличением атомных номеров элементов наблюдается уменьшение металлических свойств элементов и возрастание неметаллических свойств (способность притягивать к себе электроны). Каждый период заканчивается инертным элементом, имеющим завершенную структуру внешнего электронного слоя (полный октет).

Устойчивость такого октета объясняет пассивность инертных элементов, что не позволяет причислить их к металлам или неметаллам. В группах расположены элементы, имеющие одинаковое строение внешнего электронного слоя, т. е. электронные аналоги. Номер группы указывает число электронов на внешней электронной оболочке атомов элементов данной группы. Элементы, находящиеся в одной группе проявляют близкие химические свойства. Однако и внутри группы свойства элементов изменяются. Это связано с тем, что внутри каждой группы сверху вниз у элементов увеличивается число электронных слоев, т. е. атомный радиус. Чем больше атомный радиус, тем дальше от ядра электроны внешнего слоя и тем слабее они удерживаются ядром.

Таким образом, в группах сверху вниз усиливаются металлические и уменьшаются неметаллические свойства. В периодической таблице группы делятся на два типа: 8 групп IA- VIIIA и 8 групп IB- VIIIB. Группа VIIIB состоит из триад. В группах IА и IIA находятся s-элементы, у них последним заполняется электронами s-подуровень внешнего уровня. Далее, согласно правилам Клечковского, для элементов с главным квантовым числом n= 2 и n= 3 (второй и третий период) происходит заполнение р- подуровня. Это р- элементы, они располагаются в группах IIIA- VIIIA. Для элементов IV и V периода после заполнения электронами s- подуровня энергетически более выгодно заполнение соответственно 3d- и 4d- поуровней, что и происходит у элементов групп IB- VIIIB.

Группы типа В расположены в порядке, указывающем число валентных электронов атомов элементов, так как у d- элементов валентными являются электроны не только внешнего уровня, но и заполняемого второго снаружи уровня. После полного заполнения d- электронами второго снаружи уровня, происходит заполнение р- подуровня последнего электронного уровня (группы IIIA- VIIIA).

У актиноидов и лантаноидов происходит заполнение электронами f- подуровня третьего снаружи энергетического уровня, что и обуславливает схожесть их химических свойств.

Как видно, с учетом заполнения электронами энергетических уровней, в периодической таблице с увеличением атомных номеров элементов наблюдается периодическое повторение строения внешних электронных слоев, что и обусловливает периодичность свойств химических элементов.

С электронной конфигурацией атома связаны такие его свойства, как энергия ионизации, сродство к электрону, электроотрицательность, степень окисления.

Смотрите также

Первая группа периодической системы
Структура внешних электронных слоев в атомах элементов I группы позволяет прежде всего предполагать отсутствие у них тенденции к присоединению электронов. С другой стороны, отдача единственного внеш .

Синтез и анализ ХТС в производстве ацетона
Задание Какое количество гидроперекиси изопропилбензола необходимо, если известно, что в процессе разложения получается 6 т. толуола, степень разложения 80 % .

Двойкам нет

Натрий и калий как представители щелочных металлов: строение атомов, распространение в природе. Физические и химические свойства натрия и калия. Добыча применение натрия и калия

Натрий и калий являются элементами главной подгруппы I группы периодической системы химических элементов Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится 1 неспаренный s-электрон. Пытаясь завершить внешний энергетический уровень, атомы этих элементов энергично отдают один электрон и проявляют свойства активных восстановителей. В своих соединениях эти элементы являются одновалентными. Итак, Натрий и калий — типичные представители щелочных металлических элементов.

В природе щелочные элементы встречаются только в виде солей. Важнейшими минералами натрия является каменная соль или галит NaCl, чилийская селитра NaNO3, глауберова соль или мирабилит Na2SO4 · 10H2O. Большое количество солей натрия кристаллизуется при испарении морской воды. Массовая доля натрия в земной коре составляет 2,6%. Калий, как и натрий, является достаточно распространенным химическим элементом. Массовая доля калия в земной коре — 2,5%. Природные соли калия — сильвин KCl, сильвинит КCl · NaCl, карналлит КCl · MgCl2 · 6H2O. Калий входит в состав полевых шпатов и слюды.

Катионы натрия и калия играют важную роль в жизнедеятельности живых организмов. Натрий содержится в костной ткани, крови, мозга, легких, жидкости глаза, спинномозговой жидкости. Катионы натрия участвуют в поддержании осмотического давления и кислотно-щелочного равновесия, в проведении нервных импульсов. Калий содержится в костной ткани, мышцах, крови, мозге, сердце, почках. Катионы калия участвуют в проведении биоэлектрических потенциалов в нервах и мышцах, в регуляции сокращений сердца и других мышц, поддерживают осмотическое давление в клетках, активируют некоторые ферменты.

По физическим свойствам натрий и калий являются типичными металлами. Они серебристо-белый цвет, высокую электропроводность и теплопроводность. Отличаются они тем, что достаточно пластичными, мягкими (их легко резать ножом), легкими (плавают на поверхности воды) и легкоплавкими. Свежие срезы натрия и калия блестят. Эти металлы очень активны, поэтому их хранят под слоем керосина, или в запаянных ампулах.

Натрий и калий имеют высокую химическую активность и являются сильными восстановителями. На воздухе натрий и калий легко окисляются. Продуктами реакции являются соответствующие оксиды и пероксиды этих элементов:

4K + O2 = 2K2O K + O2 = KO2.

Натрий и калий активно реагируют с галогенами с выделением света. При взаимодействии натрия с хлором образуется натрий хлорид:

2Na + Сl2 = 2NaСl.

Продуктами реакций натрия и калия с серой являются сульфиды этих элементов, например:

При взаимодействии натрия и калия с водой образуется соответствующий луг и газовать водород.

Натрий реагирует с водой достаточно активно:

2Na + 2H2O = 2NaOH + H2 ↑.

Реакция калия с водой происходит еще активнее с возможным самовоспламенением водорода:

2K + 2H2O = 2KOH + H2.

Натрий и калий добывают электролизом расплавов хлоридов и гидроксидов этих элементов. Впервые натрий и калий были получены в 1807 году английским ученым Хэмфри Дэви.

Натрий используют как наполнитель газоразрядных ламп. В металлургии натрием восстанавливают некоторые редкие металлы: титан, цирконий, тантал. Калий используется в фотоэлементах. Натрий, калий и их сплавы применяют как теплоносители в ядерных энергетических установках. Калий является важным элементом для развития растений, и вносится в почву в виде калийных удобрений.

Свойства калия

Калием называется элемент, находящийся в периодической системе Менделеева под 19-ым номером. Вещество принято обозначать заглавной буквой К (от латинского Kalium). В русской химической номенклатуре настоящее название элемента появилось благодаря Г.И. Гессу в 1831 году. Изначально калий называли «аль-кали», что в переводе с арабского означает «зола растений». Именно едкий кали стал материалом для самого первого получения вещества. Едкий кали, в свою очередь, добывался из поташа, который являлся продуктами горения растений (карбонат калия). Его первооткрывателем стал Х. Дэви. Стоит отметить, что карбонат калия является прототипом современного моющего средства. Позже он использовался для удобрений, используемых в сельском хозяйстве, в производстве стекла и других целей. В настоящее поташ – это пищевая добавка, прошедшая официальную регистрацию, а калий научились добывать совершенно другими путями.

В природе калий можно обнаружить только в виде соединений с другими элементами (например, морская вода, или минералы), свободный его вид не встречается вообще. Он способен в достаточно короткий промежуток времени окисляться на открытом воздухе, а также вступать в химические реакции (например, при взаимодействии калия с водой, образуется щелочь).

Таблица 1.Запасы калийных солей (млн т в пересчете на к2о) и среднее содержание к2о в рудах, %
Страна, часть света Запасы общие Запасы подтвержденные Их % от мира Среднее содержание
1 2 3 4 5
Россия 19118 3658 31,4 17,8
Европа 3296 2178 18,5
Беларусь 1568 1073 9,1 16
Великобритания 30 23 0,2 14
Германия 1200 730 6,2 14
Испания 40 20 0,2 13
Италия 40 20 0,2 11
Польша 10 10 0,1 12
Украина 375 292 2,5 11
Франция 33 10 0,1 15
Азия 2780 1263 10,8
Израиль 600 44 0,4 1,4
Иордания 600 44 0,4 1,4
Казахстан 102 54 0,5 8
Китай 320 320 2,7 12
Таиланд 150 75 0,6 2,5
Туркменистан 850 633 5,4 11
Узбекистан 159 94 0,8 12
Африка 179 71 0,6
Конго 40 10 0,1 15
Тунис 34 19 0,2 1,5
Эфиопия 105 42 >0,4 25
14915 4548 38,7
Аргентина 20 15 0,1 12
Бразилия 160 50 0,4 15
Канада 14500 4400 37,5 23
Мексика 10 12
США 175 73 0,6 12
Чили 50 10 0,1 3
Итого: 40288 11744 100

Описание калия

Калий в виде простого вещества представляет собой щелочной металл. Для него характерен серебристо-белый окрас. На свежей поверхности моментально появляется блеск. Калий является мягким металлом, легко поддающимся плавлению. Если вещество или его соединения поместить в пламя горелки, то огонь приобретет розово-фиолетовый цвет.

Физические свойства калия

Калий очень мягкий металл, который легко разрезать обычным ножом. Его твердость по Бринеллю составляет 400 кн/м 2 (или 0,04 кгс/мм 2 ). Он имеет объемноцентрированную кубическую кристаллическую решетку (5=5,33 А). Его плотность составляет 0,862 г/см 3 (20 0 С). Вещество начинает плавиться при температуре в 63,55 0 С, закипать – при 760 0 С. Имеет коэффициент термического расширения, который равняется 8,33*10 -5 (0-50 0 С). Его удельная теплоемкость при температуре в 20 0 С составляет 741,2 дж/(кг*К) или же 0,177 кал/(г* 0 С). При той же температуре имеет удельное электросопротивление, равное 7,118*10 -8 ом*м. Температурный коэффициент электросопротивления металла составляет 5,8*10 -15 .

Калий образует кристаллы кубической сингонии, пространственная группа I m3m, параметры ячейки a = 0,5247 нм, Z = 2.

Химические свойства

Калий является щелочным металлом. В связи с этим, металлические свойства калия проявляются типично, так же, как и других подобных металлов. Элемент проявляет свою сильную химическую активность, а кроме этого, также выступает в роли сильного восстановителя Как уже говорилось выше, металл активно вступает в реакцию с воздухом, о чем свидетельствует появление пленок на его поверхности, в результате чего его цвет становится тусклым. Данную реакцию можно наблюдать невооруженным глазом. Если калий на протяжении достаточно длительного времени контактирует с атмосферой, то есть вероятность его полного разрушения. При вступлении в реакцию с водой, происходит характерный взрыв. Это связано с выделяющимся водородом, который воспламеняется характерным розовато-фиолетовым пламенем. А при добавлении в воду, реагирующую с калием фенолфталеина, она приобретает малиновый цвет, который свидетельствует о щелочной реакции образующегося гидроксида калия (КОН).

При взаимодействии металла с такими элементами, как Na, Tl, Sn, Pb, Bi , образуются интерметаллиды

Указанные характеристики калия говорят о необходимости соблюдений определенных правил безопасности и условий во время хранения вещества. Так, вещество следует покрывать слоем бензина, керосина или силикона. Это делается для полного исключения его контакта с воздухом или водой.

Стоит отметить, что в условиях комнатной температуры металл вступает в реакцию с галогенами. Если его немного нагреть, то он легко взаимодействует с серой. В случае же увеличения температуры, калий способен соединяться с селеном и теллуром. Если повысить температуру более 200 0 С в атмосфере водорода, то образуется гидрид КН, который способен воспламеняться без посторонней помощи, т.е. самостоятельно. Калий совершенно не взаимодействует с азотом, даже если для этого создать надлежащие условия (повышенные температуру и давление). Однако, контактировать эти два вещества можно заставить, повлияв на них электрическим разрядом. В данном случае получится азид калия KN3 и нитрид калия K3N. Если нагреть вместе графит и калий, то в результате получатся карбиды KC8 (при 300 °С) и KC16 (при 360 °C).

Читайте также:  Что с точки зрения достоевского является преступлением

При взаимодействии калия и спиртов получаются алкоголяты. Кроме этого, калий делает существенно быстрее процесс полимеризации олефинов и диолефинов. Галогеналкилы и галогенарилы вместе с девятнадцатым элементом в результате дают калийалкилы и калийарилы.

Таблица 2. Химические свойства калия

Энергия ионизации (первый электрон)

Характеристика Значение
Свойства атома
Название, символ, номер Калий / Kalium (K), 19
Атомная масса (молярная масса) 39,0983(1)[1] а. е. м. (г/моль)
Электронная конфигурация [Ar] 4s1
235 пм
Химические свойства
Ковалентный радиус 203 пм
Радиус иона 133 пм
Электроотрицательность 0,82 (шкала Полинга)
Электродный потенциал −2,92 В
Степени окисления 0; +1
418,5 (4,34) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 0,856 г/см³
Температура плавления 336,8К; 63,65 °C
Температура кипения 1047К; 773,85 °C
Уд. теплота плавления 2,33 кДж/моль
Уд. теплота испарения 76,9 кДж/моль
Молярная теплоёмкость 29,6[2] Дж/(K·моль)
Молярный объём 45,3 см³/моль
Кристаллическая решётка простого вещества
Структура решётки Кубическая объёмно-центрированная
Параметры решётки 5,332 Å
Температура Дебая 100 K

Электронное строение атома калия

Калий имеет положительно заряженное ядро атома (+19). В середине этого атома присутствуют 19 протонов и 19 нейтронов, которые окружаются четырьмя орбитами, где в постоянном движении находятся 19 электронов. Электроны распределены на орбиталях в следующем порядке:

На внешнем энергетическом уровне атома металла находится всего 1 валентный электрон. Это объясняет тот факт, что абсолютно во всех соединениях калий имеет валентность 1. В отличие от лития и натрия, данный электрон располагается на более удаленном расстоянии от ядра атома. Это является причиной повышенной химической активностью калия, чего нельзя сказать об упомянутых двух металлах. Таким образом, внешняя электронная оболочка калия представлена следующей конфигурацией:

Не смотря на присутствие вакантных 3p— и 3d-орбиталей, возбужденное состояние отсутствует.

Характеристика химического элемента КАЛИЯ

Характеристика химического элемента КАЛИЯ

Калий — обозначается символом K — химический элемент I группы периодической системы Менделеева;

  • атомный номер 19,
  • атомная масса 39,098;

Калий — серебристо-белый, очень легкий, мягкий и легкоплавкий металл.

Элемент состоит из двух стабильных изотопов — 39K (93,08%), 41K (6,91%) и одного слабо радиоактивного 40K (0,01%) с периодом полураспада 1,32·109 лет.

Элемент калий находится в четвертом периоде периодической системы, значит, все электроны располагаются на четырех энергетических уровнях. Таким образом, строение атома калия записывается так: +19К: 2ё; 8ё; 8ё; 1ё.

Исходя из строения атома, можно предсказать степень окислени С1 калия в его соединениях. Так как в химических реакциях атом калия отдает один внешний электрон, проявляя восстановительные свойства, следовательно, он приобретает степень окисления +1.

Восстановительные свойства у калия выражены сильнее, чем у натрия, но слабее, чем у рубидия, что связано с ростом радиусов от Nа к Rb.

Калий — простое вещество, для него характерна металлическая кристаллическая решетка и металлическая химическая связь, а отсюда — и все типичные для металлов свойства.

Металлические свойства у калия выражены сильнее, чем у натрия, но слабее, чем у рубидия, т.к. атом калия легче отдает электрон, чем атом натрия, но труднее, чем атом рубидия.

Металлические свойства у калия выражены сильнее, чем у кальция, т.к. один электрон атома калия легче оторвать, чем два электрона атома кальция.

Оксид калия К2O является основным оксидом и проявляет все типичные свойства основных оксидов. Взаимодействие с кислотами и кислотными оксидами.

В качестве гидроксида калию соответствует основание (щелочь) КОН, которое проявляет все характерные свойства оснований: взаимодействие с кислотами и кислотными оксидами.

Летучего водородного соединения калий не образует, а образует гидрид калия КН

В природе калий встречается только в соединениях с другими элементами, например, в морской воде, а также во многих минералах. Он очень быстро окисляется на воздухе и очень легко вступает в химические реакции, особенно с водой, образуя щёлочь. Во многих отношениях химические свойства калия очень близки к натрию, но с точки зрения биологической функции и использования их клетками живых организмов они все же отличаются.

Характеристика элементов 1-4 периодов исходя из положения в периодический системе с точки зрения теории строения атома

К пемрвому перимоду периодимческой системмы относятся элементы первой строки (или первого периода) периодической системы химических элементов. Первый период содержит меньше всего элементов (их всего два: водород и гелий) по сравнению с другими строками таблицы. Данное положение объясняется современной теорией строения атома.

Порядковый номер: 1

Массовое число: 1

Число протонов: 1

число нейтронов: 0

Энергетических уровней: 1

Порядковый номер: 2

Массовое число: 4

Число протонов: 2

число нейтронов: 2

Энергетических уровней: 1

Ко второму периоду периодической системы относятся элементы второй строки (или второго периода) периодической системы химических элементов. Второй период содержит больше элементов, чем предыдущий, в него входят: литий, бериллий, бор, углерод, азот, кислород, фтор и неон.

Порядковый номер: 3

Массовое число: 7

Число протонов: 3

число нейтронов: 4

Энергетических уровней: 2

Порядковый номер: 4

Массовое число: 9

Число протонов: 4

число нейтронов: 5

Энергетических уровней: 2

Порядковый номер: 5

Массовое число: 11

Число протонов: 5

число нейтронов: 6

Энергетических уровней: 2

Порядковый номер: 6

Массовое число: 12

Число протонов: 6

число нейтронов: 6

Энергетических уровней: 2

Порядковый номер: 7

Массовое число: 14

Число протонов: 7

число нейтронов: 7

Энергетических уровней: 2

Порядковый номер: 8

Массовое число: 16

Число протонов: 8

число нейтронов: 8

Энергетических уровней: 2

Порядковый номер: 9

Массовое число: 19

Число протонов: 9

число нейтронов: 10

Энергетических уровней: 2

Порядковый номер: 10

Массовое число: 20

Число протонов: 10

число нейтронов: 10

Энергетических уровней: 2

К третьему периоду периодической системы относятся элементы третьей строки (или третьего периода) периодической системы химических элементов. Третий период содержит восемь элементов (как и предыдущий), в него входят: натрий, магний, алюминий, кремний, фосфор, сера, хлор и аргон. Первые два из них, натрий и магний, входят в s-блок периодической таблицы, тогда как остальные относятся к р-блоку. Следует обратить внимание, что 3d-орбитали у элементов не заполнены до 4 периода, что даёт периодам таблицы их характерный вид «две строки в одной».

Порядковый номер: 11

Массовое число: 23

Число протонов: 11

число нейтронов: 12

Энергетических уровней: 3

Порядковый номер: 12

Массовое число: 24

Число протонов: 12

число нейтронов: 12

Энергетических уровней: 3

3) Аллюминий — Al

Порядковый номер: 13

Массовое число: 27

Число протонов: 13

число нейтронов: 14

Энергетических уровней: 3

Порядковый номер: 14

Массовое число: 28

Число протонов: 14

число нейтронов: 14

Энергетических уровней: 3

Порядковый номер: 15

Массовое число: 31

Число протонов: 15

число нейтронов: 16

Энергетических уровней: 3

Порядковый номер: 16

Массовое число: 32

Число протонов: 16

число нейтронов: 16

Энергетических уровней: 3

Порядковый номер: 17

Массовое число: 35,5

Число протонов: 17

число нейтронов: 18,5

Энергетических уровней: 3

Порядковый номер: 18

Массовое число: 40

Число протонов: 18

число нейтронов: 22

Энергетических уровней: 3

К четвёртому периоду периодической системы относятся элементы четвёртой строки (или четвёртого периода) периодической системы химических элементов. Четвёртый период содержит восемнадцать элементов (на десять элементов больше, чем предыдущий), в него входят: калий, кальций, скандий, титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, мышьяк, селен, бром и криптон. Первые два из них, калий и кальций, входят в s-блок периодической таблицы, десять следующих являются d-элементами, а остальные относятся к р-блоку. Следует обратить внимание, что заполненные 3d-орбитали появляются только у элементов 4 периода. Все элементы этого периода имеют стабильные изотопы, все они встречаются в природе.

Двойкам нет

Натрий и калий как представители щелочных металлов: строение атомов, распространение в природе. Физические и химические свойства натрия и калия. Добыча применение натрия и калия

Натрий и калий являются элементами главной подгруппы I группы периодической системы химических элементов Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится 1 неспаренный s-электрон. Пытаясь завершить внешний энергетический уровень, атомы этих элементов энергично отдают один электрон и проявляют свойства активных восстановителей. В своих соединениях эти элементы являются одновалентными. Итак, Натрий и калий — типичные представители щелочных металлических элементов.

В природе щелочные элементы встречаются только в виде солей. Важнейшими минералами натрия является каменная соль или галит NaCl, чилийская селитра NaNO3, глауберова соль или мирабилит Na2SO4 · 10H2O. Большое количество солей натрия кристаллизуется при испарении морской воды. Массовая доля натрия в земной коре составляет 2,6%. Калий, как и натрий, является достаточно распространенным химическим элементом. Массовая доля калия в земной коре — 2,5%. Природные соли калия — сильвин KCl, сильвинит КCl · NaCl, карналлит КCl · MgCl2 · 6H2O. Калий входит в состав полевых шпатов и слюды.

Катионы натрия и калия играют важную роль в жизнедеятельности живых организмов. Натрий содержится в костной ткани, крови, мозга, легких, жидкости глаза, спинномозговой жидкости. Катионы натрия участвуют в поддержании осмотического давления и кислотно-щелочного равновесия, в проведении нервных импульсов. Калий содержится в костной ткани, мышцах, крови, мозге, сердце, почках. Катионы калия участвуют в проведении биоэлектрических потенциалов в нервах и мышцах, в регуляции сокращений сердца и других мышц, поддерживают осмотическое давление в клетках, активируют некоторые ферменты.

По физическим свойствам натрий и калий являются типичными металлами. Они серебристо-белый цвет, высокую электропроводность и теплопроводность. Отличаются они тем, что достаточно пластичными, мягкими (их легко резать ножом), легкими (плавают на поверхности воды) и легкоплавкими. Свежие срезы натрия и калия блестят. Эти металлы очень активны, поэтому их хранят под слоем керосина, или в запаянных ампулах.

Натрий и калий имеют высокую химическую активность и являются сильными восстановителями. На воздухе натрий и калий легко окисляются. Продуктами реакции являются соответствующие оксиды и пероксиды этих элементов:

4K + O2 = 2K2O K + O2 = KO2.

Натрий и калий активно реагируют с галогенами с выделением света. При взаимодействии натрия с хлором образуется натрий хлорид:

2Na + Сl2 = 2NaСl.

Продуктами реакций натрия и калия с серой являются сульфиды этих элементов, например:

При взаимодействии натрия и калия с водой образуется соответствующий луг и газовать водород.

Натрий реагирует с водой достаточно активно:

2Na + 2H2O = 2NaOH + H2 ↑.

Реакция калия с водой происходит еще активнее с возможным самовоспламенением водорода:

2K + 2H2O = 2KOH + H2.

Натрий и калий добывают электролизом расплавов хлоридов и гидроксидов этих элементов. Впервые натрий и калий были получены в 1807 году английским ученым Хэмфри Дэви.

Натрий используют как наполнитель газоразрядных ламп. В металлургии натрием восстанавливают некоторые редкие металлы: титан, цирконий, тантал. Калий используется в фотоэлементах. Натрий, калий и их сплавы применяют как теплоносители в ядерных энергетических установках. Калий является важным элементом для развития растений, и вносится в почву в виде калийных удобрений.

Вопросы и ответы по устному модулю по химии. Задание 1 1 Периодический закон Д. И. Менделеева, его современная формулировка. 2 Структура периодический системы с точки зрения строения атома.

Название Задание 1 1 Периодический закон Д. И. Менделеева, его современная формулировка. 2 Структура периодический системы с точки зрения строения атома.
Анкор Вопросы и ответы по устному модулю по химии.docx
Дата 25.02.2017
Размер 138.97 Kb.
Формат файла
Имя файла Вопросы и ответы по устному модулю по химии.docx
Тип Закон
#3118
страница 1 из 6

1) Периодический закон Д.И.Менделеева, его современная формулировка. 2) Структура периодический системы с точки зрения строения атома.3) Периодичность изменения свойств атома: энергия ионизации, электронегатисность, энергия средство к электрону. 4) Основные классы химических соединений. 5) Классификация биогенных элементов. 6) Качественное и количественное содержание макро- и микроэлементов в организме человека. 7) Элементы – органогены.

Периодический закон – фундаментальный закон природы, открытый Д. И. Менделеевым в 1869 году при сопоставлении свойств известных в то время химических элементов и величин их атомных масс.

Формулировка периодического закона, данная Д.И. Менделеевым, гласила: свойства химических элементов находятся в периодической зависимости от атомных масс этих элементов. Современная формулировка гласит: свойства химических элементов находятся в периодической зависимости от заряда ядра этих элементов. Такое уточнение потребовалось, поскольку к моменту установления Менделеевым периодического закона еще не было известно о строении атома. После выяснения строения атома и установления закономерностей размещения электронов по электронным уровням стало ясно, что периодическая повторяемость свойств элементов связана с повторяемостью строения электронных оболочек.

Периодическая система – графическое изображение периодического закона, суть которого в том, то с увеличением заряда ядра периодически повторяется строение электронной оболочки атомов, а значит будут периодически изменяться свойства химических элементов и их соединений.

Свойство элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от зарядов ядер и атомов.

Энергия ионизации – разновидность энергии связи, представляет собой наименьшую энергию, необходимую для удаления электрона от свободного атома в его низшем энергетическим (основном) состоянии на бесконечность.

Энергия ионизации является одной из главных характеристик атома, от которой в значительной степени зависят природа и прочность образуемых атомом химических связей. От энергии ионизации атома существенно зависят также восстановительные свойства соответствующего простого вещества. Энергия ионизации элементов измеряется в электронвольт на 1 атом или джоуль на моль.

Сродство к электрону – энергия, которая выделяется или поглощается вследствие присоединения электрона к изолированному атому, находящемуся в газообразном состоянии. Выражается в килоджоулях на моль (кДж/моль) или электрон-вольтах (эВ). Оно зависит от тех же факторов, что и энергия ионизации.

Электроотрицательность – относительная способность атомов элемента притягивать к себе электроны в любом окружении. Она напрямую зависит от радиуса или размера атома. Чем радиус меньше, тем сильнее он будет притягивать электроны от другого атома. Поэтому, чем выше и правее стоит элемент в периодической таблице, тем меньше у него радиус и больше электроотрицательность. По существу, электроотрицательность определяет вид химической связи.

Химическое соединение – сложное вещество, состоящее из химически связанных атомов двух или более элементов. Делятся на классы: неорганические и органические.

Органические соединения – класс химических соединений, в состав которых входит углерод (есть исключения). Основные группы органических соединений: углеводороды, спирты, альдегиды, кетоны, карбоновые кислоты, амиды, амины.

Неорганические соединения – химические соединение, которое не является органическим, то есть оно не содержит углерода. Неорганические соединения не имеют характерного для органических соединений углеродного скелета. Делятся на простые и сложные (оксиды, основания, кислоты, соли).

Химический элемент – совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающих с порядковым (атомным) номером в таблице Менделеева. Каждый химический элемент имеет свое латинское название химический символ, состоящий з одной или пары латинских букв, регламентированные ИЮПАК и приводятся в таблице Периодической системы элементов Менделеева.

В составе живого вещества найдено более 70 элементов.

Биогенные элементы – элементы, необходимые организму для построения и жизнедеятельности клеток и органов. Существует несколько классификаций биогенных элементов:

А) По их функциональной роли:

1) органогены, в организме их 97% (C, H, O, N, P, S);

2) элементы электролитного фона (Na, K, Ca, Mg, Cl). Данные ионы металлов составляют 99% общего содержания металлов в организме;

3) микроэлементы – биологически активные атомы центров ферментов, гормонов (переходные металлы).

Б) По концентрации элементов в организме:

1) макроэлементы – содержание превышает 0,01% от массы тела (Fe, Zn, I, Cu, Mn, Cr, F, Mo, Co, Ni, B, V, Si, Al, Ti, Sr, Se, Rb, Li)

2) микроэлементы – содержание составляет величину порядка 0,01%. Большинство содержится в основном в тканях печени. Некоторые микроэлементы проявляют сродство к определенным тканям (йод – к щитовидной железе, фтор – к эмали зубов, цинк – к поджелудочной железе, молибден – к почкам). (Ca, Mg, Na, K, P,Cl, S).

3) ультрамикроэлементы – содержание меньше чем 10-5%. Данные о количестве и биологическом роли многих элементов не выявлены до конца.

• Fe — Накапливается в эритроцитах, селезенке, печени

• К — Накапливается в сердце, скелетных и гладких мышцах, плазме крови, нервной ткани, почках.

• Mn — органы-депо: кости, печень, гипофиз.

• P — органы-депо: кости, белковые вещества.

• Ca — органы-депо: кости, кровь, зубы.

• Zn — органы-депо: печень, простата, сетчатка.

• I — Органы-депо: щитовидная железа.

• Si — органы-депо: печень, волосы, хрусталик глаза.

• Mg — органы-депо: биологические жидкости, печень

• Cu — органы-депо: кости, печень, желчный пузырь

• S — органы-депо: соединительная ткань

• Ni — органы-депо: легкие, печень, почки, поджелудочная железа, плазма крови.

Биологическая роль макро- и микроэлементов:

• Fe — участвует в кроветворении, дыхании, иммунобиологических и окислительно-восстановительных реакциях. При недостатке развивается анемия.

• К — участвует в мочеиспускании, возникновении потенциала действия, поддержание осмотического давления, синтез белков.

• Mn — Влияет на развитие скелета, участвует в реакциях иммунитета, в кроветворении и тканевом дыхании.

• P — сочетает последовательные нуклеотиды в нитях ДНК и РНК. АТФ, служит главным энергетическим носителем клеток. Формирует клеточные мембраны. Прочность костей определяется наличие в них фосфатов.

• Ca — участвует в возникновении нервного возбуждения, в свертывающей функций крови, обеспечивает осмотическое давление крови.

• Co — Ткани в которых обычно скапливается микроэлемент: кровь, селезенка, кость, яичники, печень, гипофиз. Стимулирует кроветворение, участвует в синтезе белков и углеводном обмене.

• Zn — участвует в кроветворении, участвует в деятельности желез внутренней секреции.

• I — Нужен для нормального функционирования щитовидной железы, влияет на умственные способности.

• Si — способствует синтезу коллагена и образования хрящевой ткани.

• Mg — участвует в различных реакциях метаболизма: синтез ферментов, белков др. кофермент синтеза витаминов группы В.

• Cu — Влияет на синтез гемоглобина, эритроцитов, белков, кофермент синтеза витаминов группы В.

• S — Влияет на состояние кожных покровов.

• Ag — Антимикробная активность

• Ni — стимулирует синтез аминокислот в клетке, повышает активность пепсина, нормализует содержание гемоглобина, улучшает генерацию белков плазмы.

Элементы-органогены — химические элементы, составляющие основу органических соединений (C, H, O, N, S, P). В биологии органогенными называют четыре элемента, которые вместе составляют около 96-98% массы живых клеток (C, H, O, N).

Карбон — важнейший химический элемент для органических соединений. Органические соединения по определению — это соединения углерода. Он четырехвалентен и способен формировать прочные ковалентные связи между собой.

Роль водорода в органических соединениях в основном заключается в связывании тех электронов атомов углерода, которые не участвуют в образовании межкарбонових связей в составе полимеров. Однако, водород участвует в образовании нековалентных водородных связей.

Вместе с карбоном и водородом, кислород входит в многих органических соединений в составе таких функциональных групп как гидроксильная, карбонильная, карбоксильная и тому подобное.

Азот зачастую входит в состав органических веществ в форме аминогруппы или гетероцикла. Он является обязательным химическим элементом в составе. Азот входит также в состав азотистых оснований, остатки которых содержатся в нуклеозиды и нуклеотиды.

Серы входит в состав некоторых аминокислот, в частности метионина и цистеина. В составе белков между атомами серы остатков цистеина устанавливаются дисульфидные связи, обеспечивающие формирование третичной структуры.

Фосфатные группы, то есть остатки ортофосфорной кислоты входят в состав таких органических веществ как нуклеотиды, нуклеиновые кислоты, фосфолипиды, фосфопротеины.

Биогенные s- и p- элементы. Связь между электронным строением s- и p- элементов и их биологическими функциями. Соединения s- и p- в медицине.

Биохимическая роль и медико-биологическое значение биогенных s- элементов. (водород, литий, натрий, калий, кальций, магний).

Биохимическая роль и медико-биологическое значение биогенных p- элементов. (углерод, азот, фосфор, кислород, сера, хлор, бром, йод)

Биогенные d- элементы. Связь между электронным строение d- элементов и их биологическими функциями. Роль d- элементов в комплексообразовании в биологических системах.

В составе живого вещества найдено более 70 элементов.

Биогенные элементы – элементы, необходимые организму для построения и жизнедеятельности клеток и органов.

В организме человека больше всего s- и p- элементов.

Незаменимые макроэлементы s-: H, Na, Mg, K, Ca

Незаменимые макроэлементы p-: C, N, O, P, S, Cl, I.

Примесные s- и p- элементы: Li, B, F.

Концентрирование химического элемента – повышенное содержание элемента в организме по сравнению с окружающей средой.

Основу всех живых систем составляют шесть элементов-органогенов: углерод, водород, кислород, азот, фосфор, сера. Их содержание в организме достигает 97%.

Биогенные элементы подразделяют на три блока: s-, p-, d-.

Основные сведения:


  1. S-элементы – это химические элементы, в атомах которых заполняются электронами, s-подуровень внешнего уровня.

  2. Строение их валентного уровня ns 1-2 .

  3. Небольшой заряд ядра, большой размер атома способствуют тому, что атомы s-элементов – типичные активные металлы; показателем этого является невысокий потенциал их ионизации. Химия таких элементов является в основном ионной, за исключением лития и бериллия, которые обладают более сильным поляризующим действием.

  4. Имеют относительно большие радиусы атомов и ионов.

  5. Легко отдают валентные электроны.

  6. Являются сильными восстановителями. Восстановительные свойства возрастают закономерно с увеличением радиуса атома. Восстановительная способность увеличивается по группе сверху вниз.

Биологическая роль:

Вследствие очень легкой окисляемости щелочные металлы встречаются в природе исключительно в виде соединений.

Натрий


  1. Относится к жизненно необходимым элементам, постоянно содержится в организме, участвует в обмене веществ.

  2. Содержание натрия в организме человека массой 70 кг – около 60г.

  3. В организме человека натрий находится в виде растворимых солей: хлорида, фосфата, гидрокарбоната.

  4. Распределен по всему организму (в сыворотке крови, в спинномозговой жидкости, в глазной жидкости, в пищеварительных соках, в желчи, в почках, в коже, в костной ткани, в легких, в мозге).

  5. Является основным внеклеточным ионом.

  6. Ионы натрия играют важную роль в обеспечении постоянства внутренней среды человеческого организма, участвует в поддержании постоянного осмотического давления биожидкости.

  7. Ионы натрия участвуют в регуляции водного обмена и влияют на работу ферментов.

  8. Вместе с ионами калия, магния, кальция, хлора ионы натрия участвуют в передаче нервных импульсов.

  9. При изменении содержания натрия в организме происходят нарушения нервной, сердечно-сосудистой систем, гладких и скелетных мышц.

Калий


  1. Содержание калия организме человека массой 70 кг – около 160г.

  2. В организме человека калий находится в крови, почках, сердце, костной ткани, мозге.

  3. Калий является основным внутриклеточным ионом.

  4. Ионы калия играют важную роль в физиологических процессах – сокращении мышц, нормальном функционировании сердца, проведении нервных импульсов, обменных реакциях.

  5. Являются важными активаторами внутриклеточных ферментов.

Магний


  1. Общее содержание в организме 20г.

  2. Находится в дентине и эмали зубов, костной ткани.

  3. Накапливается в поджелудочной железе, скелетных мышцах, почках, мозге, печени и сердце.

  4. Является внутриклеточным катионом.

Кальций


  1. Относится к макроэлементам.

  2. Содержится в каждой клетке человеческого организма. Основная масса – в костной и зубной тканях.

  3. Ионы кальция принимают активное участие в передаче нервных импульсов, сокращении мышц, регулировании работы сердечной мышцы, механизмах свертывания крови.

P-элементы

Общая характеристика:


  1. Относят 30 элементов периодической системы.

  2. В периодах слева направо атомные и ионные радиусы p-элементов по мере увеличения заряда ядра уменьшаются, энергия ионизации и сродство к электрону в целом возрастают, электроотрицательность увеличивается, окислительная активность элементных веществ и неметаллические свойства усиливаются.

  3. В группах радиусы атомов и однотипных ионов увеличиваются. Энергия ионизации при переходе от 2р-элементам уменьшается.

  4. С увеличением порядкового номера р-элементов в группе неметаллические свойства ослабевают, а металлически усиливаются.

Биологическая роль:

Бор


  1. Относится к примесным микроэлементам.

  2. Концентрируется в легких, щитовидкой железе, селезенке, печени, мозге, почках, сердце.

  3. Входит в состав зубов и костей.

  4. Избыток бора вреден для организма человека (уменьшается активность адреналина).

Алюминий


  1. Относится к примесным элементам.

  2. Концентрируется в сыворотке крови, легких, печени, костях, почках, ногтях, волосах, входит в структуру нервных оболочек мозга человека.

  3. Суточная норма – 47мг.

  4. Влияет на развитие эпителиальной и соединительной тканей, на регенерацию костных тканей, на обмен фосфора.

  5. Оказывает воздействие на ферментативные процессы.

  6. Избыток тормозит синтез гемоглобина.

Таллий


  1. Относится к весьма токсичным элементам.

Углерод


  1. Относится к макроэлементам.

  2. Входит с состав всех тканей в форме белков, жиров, углеродов, витаминов, гормонов.

  3. С биологической точки зрения углерод является органогеном номер 1.

Кремний


  1. Относится к примесным микроэлементам.

  2. Находится в печени, надпочечниках. Волосах, хрусталике.

  3. С нарушением кремния связывают возникновение гипертонии, ревматизма, язвы, малокровия.

Германий


  1. Относится к микроэлементам.

  2. Соединения германия усиливают кроветворения в костном мозге.

  3. Соединения германия малотоксичные.

D-элементы

Общая характеристика:


  1. Относятся 32 элемента периодической системы.

  2. Входят в 4-7 большие периоды. Особенностью элементов этих периодов является непропорционально медленное возрастание атомного радиуса с возрастанием числа электронов.

  3. Важный свойством является переменная валентность и разнообразие степеней окисления. Возможность существования d-элементов в разных степенях окисления определяет широкий диапазон окислительно-восстановительных свойств элементов.

  4. D-элементы в промежуточной степени окисления проявляют амфотерные свойства.

  5. В организме обеспечивают запуск большинства биохимических процессов, обеспечивающих нормальную жизнедеятельность.

Биологическая роль:

Цинк


  1. Микроэлемент

  2. В организме человека 1,8г.

  3. Больше всего цинка в мышцах и костях, а также в плазме крови, печени, эритроцитах.

  4. Образует бионеорганический комплекс с инсулином – гормоном, регулирующим содержание сахара в крови.

  5. Содержится в мясных и молочных продуктах, яицах.

Кадмий


  1. Микроэлемент.

  2. В организме человека – 50мг.

  3. Примесный элемент.

  4. Находится в почках, печени, легких, поджелудочной железе.

Ртуть


  1. Микроэлемент.

  2. Примесный элемент.

  3. В организме человека – 13мг.

  4. Находится в жировой и мышечной тканях.

  5. Хроническая интоксикация кадмием и ртутью может нарушить минерализацию костей.

Хром


  1. Микроэлемент.

  2. В организме человека – 6г.

  3. Металлический хром нетоксичен, а соединения опасны для здоровья. Они вызывают раздражения кожи, что приводит к дерматитам.

Молибден


  1. Микроэлемент.

  2. Относится к металлам жизни, является одним из важнейших биоэлементов.

  3. Избыточное содержание вызывает снижение прочности костей – остеопороз.

  4. Входит с состав различных ферментов.

  5. Малотоксичный.

Вольфрам


  1. Микроэлемент.

  2. Роль не изучена.

  3. Анионная форма вольфрама легко абсорбируется в желудочно-кишечном тракте.
Читайте также:  С точки зрения экономической теории в основе мотивации фирмы лежит
Источники:
  • http://fb.ru/article/155331/harakteristika-kaliya-stroenie-kaliya-soedineniya-kaliya
  • http://www.chemicalnow.ru/chemies-4372-2.html
  • http://xn----7sbfhivhrke5c.xn--p1ai/%D0%BD%D0%B0%D1%82%D1%80%D0%B8%D0%B9-%D0%B8-%D0%BA%D0%B0%D0%BB%D0%B8%D0%B9/
  • http://mining-prom.ru/gorn/kaliy/svoystva-kaliya/
  • http://kratkoe.com/harakteristika-himicheskogo-elementa-kaliya/
  • http://studwood.ru/1548049/matematika_himiya_fizika/harakteristika_elementov_periodov_ishodya_polozheniya_periodicheskiy_sisteme_tochki_zreniya_teorii_stroeniya
  • http://xn----7sbfhivhrke5c.xn--p1ai/%D0%BD%D0%B0%D1%82%D1%80%D0%B8%D0%B9-%D0%B8-%D0%BA%D0%B0%D0%BB%D0%B8%D0%B9/
  • http://topuch.ru/zadanie-1-1-periodicheskij-zakon-d-i-mendeleeva-ego-sovremenna/index.html