Меню Рубрики

Адаптация восприятие цвета и острота зрения

Адаптация зрения

Способность различных людей видеть большие или меньшие детали предмета с одного и того же расстояния при одинаковой форме глазного яблока и одинаковой преломляющей силе диоптрической глазной системы обусловливается различием в расстоянии между чувствительными элементами сетчатки и называется остротой зрения.

Острота зрения — способность глаза воспринимать раздельно две точки, расположенные друг от друга на некотором расстоянии. Мерилом остроты зрения является угол зрения, то есть угол, образованный лучами, исходящими от краёв рассматриваемого предмета (или от двух точек A и B) к узловой точке (K) глаза.

Острота зрения обратно-пропорциональна углу зрения, то есть, чем он меньше, тем острота зрения выше. В норме глаз человека способен раздельно воспринимать объекты, угловое расстояние между которыми не меньше 1′ (1 минута).

Острота зрения — одна из важнейших функций зрения. Она зависит от размеров колбочек, находящихся в области жёлтого пятна, сетчатки, а также от ряда факторов: рефракции глаза, ширины зрачка, прозрачности роговицы, хрусталика (и его эластичности), стекловидного тела (кои составляют светопреломляющий аппарат), состояния сетчатой оболочки и зрительного нерва, возраста.

Приведенные выше свойства зрения тесно связаны со способностью глаза к адаптации. Адаптация глаза — приспособление зрения к различным условиям освещения. Адаптация происходит к изменениям освещённости (различают адаптацию к свету и темноте), цветовой характеристики освещения (способность

воспринимать белые предметы белыми даже при значительном изменении спектра падающего света).

Адаптация к свету наступает быстро и заканчивается в течение 5 мин., адаптация глаза к темноте — процесс более медленный. Минимальная яркость, вызывающая ощущение света, определяет световую чувствительность глаза. Последняя быстро нарастает в первые 30 мин. пребывания в темноте, её повышение практически заканчивается через 50—60 мин. Адаптацию глаза к темноте исследуют при помощи специальных приборов — адаптометров.

Понижение адаптации глаза к темноте наблюдают при некоторых глазных (пигментная дистрофия сетчатки, глаукома) и общих (A-авитаминоз) заболеваниях.

Адаптация проявляется также в способности зрения частично компенсировать дефекты самого зрительного аппарата (оптические дефекты хрусталика, дефекты сетчатки, скотомы и пр.)

Восприятие, его виды и свойства

Внешние явления, воздействуя на наши органы чувств, вызывают субъективный эффект в виде ощущений без какой бы то ни было встречной активности субъекта по отношению к воспринимаемому воздействию. Способность ощущать дана нам и всем живым существам, обладающим нервной системой, с рождения. Способностью же воспринимать мир в виде образов наделены только человек и высшие животные, она у них складывается и совершенствуется в жизненном опыте.

В отличие от ощущений, которые не воспринимаются как свойства предметов, конкретных явлений или процессов, происходящих вне и независимо от нас, восприятие всегда выступает как субъективно соотносимое с оформленной в виде предметов, вне нас существующей действительностью, причем даже в том случае, когда мы имеем дело с иллюзиями или когда воспринимаемое свойство сравнительно элементарно, вызывает простое ощущение (в данном случае это ощущение обязательно относится к какому-либо явлению или объекту, ассоциируется с ним).

Ощущения находятся в нас самих, воспринимаемые же свойства предметов, их образы локализованы в пространстве. Этот процесс, характерный для восприятия в его отличии от ощущений, называется объективацией.

Еще одно отличие восприятия в его развитых формах от ощущений состоит в том, что итогом возникновения ощущения является некоторое чувство (например, ощущения яркости, громкости, соленого, высоты звука, равновесия и т.п.), в то время как в результате восприятия складывается образ, включающий комплекс различных взаимосвязанных ощущений, приписываемых человеческим сознанием предмету, явлению, процессу. Для того чтобы некоторый предмет был воспринят, необходимо совершить в отношении его какую-либо встречную активность, направленную на его исследование, построение и уточнение образа. Для появления ощущения этого, как правило, не требуется.

Отдельные ощущения как бы «привязаны» к специфическим анализаторам, и достаточно бывает воздействия стимула на их периферические органы — рецепторы, чтобы ощущение возникло. Образ, складывающийся в результате процесса восприятия, предполагает взаимодействие, скоординированную работу сразу нескольких анализаторов. В зависимости от того, какой из них работает активнее, перерабатывает больше информации, получает наиболее значимые признаки, свидетельствующие о свойствах воспринимаемого объекта, различают и виды восприятия. Соответственно выделяют зрительное, слуховое, осязательное восприятие. Четыре анализатора — зрительный, слуховой, кожный и мышечный, — чаще всего выступают как ведущие в процессе восприятия.

Восприятие, таким образом, выступает как осмысленный (включающий принятие решения) и означенный (связанный с речью) синтез разнообразных ощущений, получаемых от целостных предметов или сложных, воспринимаемых как целое явлений. Этот синтез выступает в виде образа данного предмета или явления, который складывается в ходе активного их отражения.

Предметность, целостность, константность и категориалъностъ (осмысленность и означенность) — это основные свойства образа, складывающиеся в процессе и результате восприятия. Предметность — это способность человека воспринимать мир не в виде набора не связанных друг с другом ощущений, а в форме отделенных друг от друга предметов, обладающих свойствами, вызывающими данные ощущения. Целостность восприятия выражается в том, что образ воспринимаемых предметов не дан в полностью готовом виде со всеми необходимыми элементами, а как бы мысленно достраивается до некоторой целостной формы на основе небольшого набора элементов. Это происходит и в том случае, если некоторые детали предмета человеком непосредственно в данный момент времени не воспринимаются. Константность определяется, как способность воспринимать предметы относительно постоянными по форме, цвету и величине, ряду других параметров независимо от меняющихся физических условий восприятия. Категориальность человеческого восприятия проявляется в том, что оно носит обобщенный характер, и каждый воспринимаемый предмет мы обозначаем словом-понятием, относим к определенному классу. В соответствии с этим классом нами в воспринимаемом предмете ищутся и видятся признаки, свойственные всем предметам данного класса и выраженные в объеме и содержании этого понятия.

Описанные свойства предметности, целостности, константности и категориальности восприятия с рождения человеку не присущи; они постепенно складываются в жизненном опыте, частично являясь естественным следствием работы анализаторов, синтетической деятельности мозга.

Чаще и больше всего свойства восприятия изучались на примере зрения — ведущего органа чувств у человека. Существенный вклад в понимание того, как из отдельных зрительно воспринимаемых деталей предметов складывается их целостная картина — образ, внесли представители гешталыппсихологии — направления научных исследований, сложившегося в начале XX в. в Германии. Одним из первых классификацию факторов, влияющих на организацию зрительных ощущений в образы в русле гештальтпсихологии предложил М. Вертгеймер. Выделенные им факторы следующие:

Близость друг к другу элементов зрительного поля, вызвавших соответствующие ощущения. Чем ближе друг к другу пространственно в зрительном поле располагаются соответствующие элементы, тем с большей вероятностью они объединяются друг с другом и создают единый образ.

Сходство элементов друг с другом. Это свойство проявляется в том, что похожие элементы обнаруживают тенденцию к объединению.

Фактор «естественного продолжения». Он проявляется в том, что элементы, выступающие как части знакомых нам фигур, контуров и форм, с большей вероятностью в нашем сознании объединяются именно в эти фигуры, форму и контуры, чем в другие.

Замкнутость. Данное свойство зрительного восприятия выступает, как стремление элементов зрительного поля создавать целостные, замкнутые изображения.

Принципы перцептивной организации зрительного восприятия иллюстрируются рис. 36. Ближе друг к другу расположенные линии в ряду А скорее объединяются друг с другом в нашем восприятии, чем далеко расставленные. Добавление горизонтальных, разнонаправленных отрезков к отдельным, стоящим далеко друг от друга вертикальным линиям в ряду Б побуждает нас, напротив, видеть целостные фигуры в них, а не в близко расположенных линиях. В данном случае это квадраты. Соответствующее впечатление усиливается еще больше (ряд В), становится необратимым, если контуры оказываются замкнутыми.

Выяснилось, что восприятие человеком более сложных, осмысленных изображений происходит по-иному. Здесь в первую очередь срабатывает механизм влияния прошлого опыта и мышления, выделяющий в воспринимаемом изображении наиболее информативные места, на основе которых, соотнеся полученную информацию с памятью, можно о нем составить целостное представление. Анализ записей движений глаз, проведенный АЛ. Ярбусом 1, показал, что элементы плоскостных изображений, привлекающих внимание человека, содержат участки, несущие в себе наиболее интересную и полезную для воспринимающего информацию. При внимательном изучении таких элементов, на которых более всего останавливается взор в процессе рассматривания картин, обнаруживается, что движения глаз фактически отражают процесс человеческого мышления. Установлено, что при рассматривании человеческого лица наблюдатель больше всего внимания уделяет глазам, губам и носу. Глаза и губы человека действительно являются наиболее выразительными и подвижными элементами лица, по характеру и движениям которых мы судим о психологии человека и его состоянии. Они многое могут сказать наблюдателю о настроении человека, о его характере, отношении к окружающим людям и многом другом.

Восприятие цвета зависит не только от действующего на глаз светового потока, но и от свойств глаза. Различия между цветами, определяемые на глаз, могут не соответствовать физической величине различий, отмечаемой приборами. Различия между цветами, констатируемые разными людьми, часто оказываются неодинаковыми. Наконец, задачи, которые стоят перед наблюдателем, влияют на оценку цветов и на работу зрения. Особенности цветовосприятия различных людей фиксируют в пяти направлениях, выделяя следующие функции зрения: 1) чувствительность к различению светлоты; 2) чувствительность к различению цветового тона и насыщенности; 3) остроту зрения; 4) устойчивость ясного видения; 5) скорость зрительного восприятия.

1. Порог различения светлоты — минимальное воспринимаемое глазом различие по светлоте между цветами. Порог и чувствительность величины обратно пропорциональные. Разница в яркостях двух поверхностей оценивается глазом не в тот момент, когда она регистрируется физическими приборами, а когда она достигает 1 % от яркости сравниваемых цветных поверхностей. Закон Вебера — Фехнера говорит, что ощущение яркости возрастает в арифметической прогрессии (2, 3, 4, 5. и т. д.), в то время как раздражение возрастает в геометрической прогрессии (0,1; 0,2, 0,4; 0,8. и т. д.). Белый с яркостью, равной 100; светло-серый — 50; темно-серый — 25 образуют геометрическую прогрессию (100:50—50:25), поэтому кажущееся различие по яркости между тремя цветами будет равным.

При проектировании цветовых композиций нужно помнить, что для нашего восприятия соотношения яркостей играют гораздо более важную роль, чем абсолютные различия по яркости.

При больших силах света и при слабом освещении предметы как бы сближаются по яркости. Происходит отступление от закона Вебера — Фехнера: для получения заметной разницы в яркости необходимо различие больше 1 %.

При проектировании окраски слабо освещенного помещения градации цветов по яркости следует делать больше с тем, чтобы в натуре они выглядели соответствующими замыслу. Обратимся к восприятию светлотных характеристик хроматических цветов. Для желто-зеленой части спектра глаз способен различать наибольшее количество ступеней по светлоте, в фиолетовой — наименьшее. Кривая спектральной чувствительности фиксирует уровень чувствительности по светлоте в различных участках спектра (см. приложение, табл. 2). Наиболее ярким при дневном свете является желто-зеленый — . = 556 нм. При слабом свете максимум спектральной чувствительности смещается к голубо-зеленому — 510 нм (явление Пуркинье). Иначе говоря, при значительном ослаблении света голубые, синие, фиолетовые цвета начинают казаться светлее в сравнении с красными, оранжевыми и желтыми. При слабом освещении градации по светлоте голубых цветов заметны значительно лучше, чем светлотные различия оранжевых, красных, желтых цветов. Слабо освещенное помещение кажется более светлым, если оно окрашено в голубой цвет, в сравнении с окраской в розовый цвет равной светлоты.

Читайте также:  Как быстро восстанавливается зрение после лазерной коррекции

2. Хроматическая чувствительность. Минимальное различие по цветовому тону, которое может быть замечено, называется порогом различения цветового тона. Кривая пороговой чувствительности по цветовому тону получена учеными Райтом и Питтом (см. приложение табл. 2). Максимум чувствительности лежит в пределах . = 480 — 500 нм и = 580 — 600 нм. Чувствительность глаза к изменению цветности увеличивается с возрастом. Маленькие дети лучше взрослых замечают первое появление цветности на ахроматическом фоне. До 12 лет дети плохо различают светлотные отношения.

3. Острота зрения — способность ясно различать мелкие детали. Основное значение при этом имеет угол зрения (восприятие шрифта высотой 1 мм с расстояния 0,5 м равно восприятию шрифта высотой 2 мм с расстояния 1 м).

4. Скорость зрительного восприятия — способность воспринимать объекты, наблюдаемые в течение коротких промежутков времени. Измеряется наименьшей продолжительностью смотрения.

5. Устойчивость ясного видения — постоянство, с которым глаз может сохранять данную степень остроты зрения.

Цветовое зрение — способность человеческого глаза различать цвета, т. е. ощущать отличия в спектральном составе видимых излучений и в окраске предметов. Оно обусловлено работой нескольких светоприемников, т. е. фоторецепторов сетчатки разных типов, отличающихся спектральной чувствительностью. Фоторецепторы преобразуют энергию излучения в физиологическое возбуждение, которое воспринимается нервной системой как различные цвета, так как излучения возбуждают приемники в неодинаковой степени.

Приспособление глаза к силе света, темноте, цвету, в основе которого лежит изменение чувствительности зрения, принято называть адаптацией зрения. Понижение чувствительности глаза при ярком освещении называется световой адаптацией. Повышение чувствительности глаза в темноте называется темновой адаптацией. Понижение чувствительности глаза к данному цветовому раздражителю при продолжительном его действии называется цветовой адаптацией. Вследствие адаптации ощущение цвета не остается постоянным в течение длительного времени наблюдения. Насыщенные цвета как бы покрываются сероватой дымкой, становясь менее насыщенными и менее яркими; Изменение цвета под влиянием адаптации становится ясным при рассмотрении явления последовательного контраста цветов.

Последовательный контраст — изменение цветов в результате предварительного действия на глаз цветовых раздражителей. Он может бытъ светлотным (приложение, табл. 2) и хроматическим. В первом случае меняется светлота наблюдаемых цветов, во втором — цветовой тон и насыщенность.

Каждый может наблюдать явление последовательного контраста, если на 15 — 20 секунд остановит свой взор на кружке цветной бумаги, а затем переведет его на белую поверхность.

Если цвет предварительного наблюдения зеленый, то цвет последовательного контраста пурпурно-красный; синему соответствует оранжевый; фиолетовому — зеленовато-желтый; красному — изумрудно-зеленый; желтому — фиолетовый. Здесь надо отметить, что цвета последовательного контраста близки к дополнительным, но не тождественны им. Особенно значительна разница между дополнительными и контрастными цветами в синей и желто-оранжевой части спектра. Совпадение наблюдается лишь в паре красный — изумрудно-зеленый.

Контрастный цвет влияет на цвета, воспринимаемые глазом последовательно один за другим, как бы окрашивая каждый последующий в цвет, контрастный предыдущему. Чередование контрастных цветов в окраске смежных помещений создает ощущение повышенной насыщенности каждого.

Способность глаза воспринимать свет и распознавать различные степени его яркости называется светоощущением освещения, а приспосабливаться к различной яркости — адаптацией. Темновая адаптация характеризует степень светоощущения, т.е. способность глаза к восприятию минимального светового раздражения. Для точной количественной характеристики световой чувствительности используются специальные приборы — адаптометры. В нашей стране наиболее часто применяется адаптометр Белостоцкого—Гофмана.

Экспресс-методом исследования светочувствительности глаза является определение времени восстановления исходной остроты зрения после макулярного засвета ручным электроофтальмоскопом [Можеренков В.П., Чемный А.Б.]. Для его выполнения, кроме офтальмоскопа, следует иметь щиток для прикрывания глаза, пробную очковую оправу, пластинку для закрепления в прорези очковой оправы, корригирующие плюсовые стекла, таблицу для определения остроты зрения вблизи и секундомер. Определяется острота зрения каждого глаза вблизи (при гиперметропии и пресбиопии — возрастной дальнозоркости — с коррекцией).

В зрачок исследуемого глаза с расстояния 3—5 см от роговицы направляется световой пучок офтальмоскопа максимальной яркости. Испытуемому предлагают в течение 20 с смотреть на светящийся круг, контролируя при этом правильность его взора офтальмоскопически. Второй глаз при этом прикрывается щитком, а при необходимости коррекции исследуемого глаза — пластинкой, вставленной в прорезь пробной очковой оправы. После засвета исследуемому рекомендуют смотреть на прочитанный ранее текст до тех пор, пока он снова сможет его прочитать. Время восстановления исходной остроты зрения регистрируется по секундомеру. Исследование проводится поочередно на каждом глазу. Время обследования одного пациента не превышает 4—5 мин.

По данным исследований авторов, среднее значение (М ± т) и верхняя граница нормы (М±2ст) времени восстановления у практически здоровых людей в зависимости от возраста соответственно следующие: 18,6 ± 0,66 и 37 с в возрасте до 20 лет, 21,4 ± 0,69 и 41 с в возрасте 21—30 лет, 29,9 ± 0,84 и 52 с в возрасте 31—40 лет, 55,6 ± 1,43 и 90 с в возрасте 41—50 лет, 72 ± 1,27 и 103 с в возрасте 51—60 лет. Приведенные показатели рекомендовано использовать для оценки времени восстановления исходной остроты зрения по предлагаемой методике фотостресс-теста.

В обычных условиях для ориентировочного представления о скорости темновой адаптации можно пользоваться простыми контрольными методами: наблюдением за испытуемым в сумерках и пробой с листками белой бумаги. В первом случае проверяющий вместе с испытуемым находится в затемненной комнате и следит за его ориентацией при ходьбе, все более при этом усиливая затемнение. Потеря у исследуемого ориентации раньше, чем у исследующего, свидетельствует о повышении порога темновой адаптации.

Проба с белой бумагой основана на том же принципе. Исследуемый и исследующий находятся в темной комнате, на полу которой разбросаны небольшие листки белой бумаги. При постепенном приоткрывании двери комнаты через образующуюся щель поступает свет и наступает момент, когда исследуемый сможет различить бумагу. Если это случится позже, чем у исследующего, то адаптационную способность у исследуемого следует считать сниженной.

Резко выраженные формы расстройства темновой адаптации — гемералопии («куриная слепота») приводят к потере больными ориентации в пространстве в условиях сумеречного освещения. Нарушения светоощущения встречаются при заболеваниях щитовидной железы, половых желез, при заболеваниях печени, при недостатке в организме витамина А. Они могут быть одним из первых признаков ранней стадии поражения сетчатки при сахарном диабете. Наблюдаются и врожденные формы гемералопии, в основном семейно-наследственного характера.

Немаловажное значение в диагностике ранних изменений зрительного анализатора имеют электрофизиологические исследования; электроретинография (ЭРГ), электроэнцефалография (ЭЭГ), реоофтальмография (РОГ), электроокулография (ЭОГ), определение электрической чувствительности (ЭЧ) и электрической лабильности (ЭЛ), а также зрительных вызванных потенциалов (ЗВП).

ЭРГ позволяет судить о функциональном состоянии наружных слоев сетчатки. Она изменяется при пигментной дистрофии, отслойке сетчатки, закупорке центральной артерии. На основании результатов ЭЭГ определяется состояние коркового и в определенной степени подкоркового зрительных нервов. ЭЧ отражает физиологическое состояние внутренних слоев сетчатки, снижаясь (повышается ее порог) при пигментной ретинопатии, отслойке сетчатки, атрофии зрительного нерва, остром нарушении кровообращения сетчатки [Лебедев В.В., Скловская М.Л., Завьялова Э.К., Шпак А.А., Шпак А.А., Линник Л.Ф., Шигина НА., Антропов Г.М., Зеленцов С.Н., Яковлев А.А., Степанов А.В., Линник Л.Ф., Гаджиева Н.С., Руднева М.А. и др.].
РОГ характеризует состояния сосудистого тракта глаза и используется, в частности, для выявления ранних проявлений диабетической ретинопатии.

Объективным методом исследования сосудов глазного дна является флюоресцентная ангиография. Окрашивание при этом ткани сетчатки всегда свидетельствует о наличии патологии. Однако электрофизиологические методы исследования, в частности ЭРГ, дают более полное представление о степени поражения сетчатки, что является важным прогностическим моментом и способствует правильному выбору тактики ведения больных.

При подозрении на эндокринную причину выявляемых изменений органа зрения проводится обследование больного совместно с эндокринологом для выяснения патологического изменения в функционировании той или иной железы внутренней секреции.

Адаптация зрения

Периферический орган зрения реагирует на происходящие перемены в освещении и функционирует в независимости от степени яркости освещения. Адаптация глаза представляет собой способность приспосабливаться к разным уровням освещенности. Реакция зрачка на происходящие перемены дает восприятие визуальной информации в миллионном диапазоне интенсивности от лунного до яркого освещения, несмотря на относительный динамический объем отклика зрительных нейронов.

Виды адаптации

Учеными изучены следующие виды:

  • световая — адаптация зрения при дневном или ярком освещении;
  • темновая — при темноте или слабом свете;
  • цветовая — условия изменения цвета подсветки объектов, которые расположены вокруг.

Вернуться к оглавлению

Как происходит?

Адаптация световая

Происходит при переходе из темноты к сильному освещению. Оно мгновенно ослепляет и изначально виден только белый, так как чувствительность рецепторов настроена на тусклый свет. Одну минуту времени занимает у конусов для поражения резким светом, чтобы захватить его. При привыкании светочувствительность сетчатки теряется. Полное привыкание глаза к естественному освещению происходит в течение 20 минут. Существует два способа:

  • резкое снижение чувствительности сетчатки;
  • сетчатые нейроны подвергаются скорому приспособлению, тормозящему функцию стержня и благоприятствующей конусной системе.

Вернуться к оглавлению

Темновая адаптация

Темновая адаптация представляет собой обратный процесс световой. Это случается при переходе от хорошо освещенной области к темной области. Первоначально наблюдается чернота, так как конусы перестают функционировать в свете низкой интенсивности. Механизм адаптации можно разделить на четыре фактора:

  • Интенсивность и время света: увеличивая уровни предварительно адаптируемых яркостей, время доминирования конического механизма расширяется, пока переключение стержневого механизма задерживается.
  • Размер и расположение сетчатки: расположение тестового пятна влияет на темную кривую из-за распределения стержней и конусов в сетчатке.
  • Длина волны порогового света непосредственно воздействует на темновую адаптацию.
  • Регенерация родопсина: при воздействии светлых фотопигментов как в стержневых, так и в конических фоторецепторных клетках получаются структурные изменения.

Стоит отметить, что ночное видение имеет гораздо более низкое качество, чем зрение при нормальном свете, так как ограничено уменьшенным разрешением и обеспечивает возможность отличать только оттенки белого и черного. Примерно полчаса занимает у глаза приспособиться к сумеркам и приобрести чувствительность в сотни тысяч раз более, чем при дневном свете.

Привыкание глаза к темноте занимает гораздо больше времени у пожилых людей, чем молодых.

Цветовая адаптация

Заключается в смене восприятия рецепторов сетчатки глаза, у которых максимумы спектральной чувствительности располагаются в разных цветовых спектрах излучения. К примеру, при смене естественного дневного света на свет ламп в помещении, изменения произойдут в цветах предметов: зеленый цвет будет отражаться желто-зеленым оттенком, розовый — красным. Такие изменения видны только короткий отрывок времени, со временем они исчезают и кажется, что цвет объекта остается прежним. Глаз привыкает к излучению, отраженного от объекта и воспринимается как и при дневном свете.

Недостаточность адаптации

Несмотря на то что привыкание проходит у всех по-разному, существует заболевания, которые связаны с адаптацией глаза к освещению. Такой болезнью является никталопия (ночная слепота) — невозможность видеть при низком свете. Недуг может быть от рождения или спровоцирован травмой или недоеданием. Наиболее распространенным фактором проявления ночной слепоты является дефицит витамина А. Особенно заметна в развивающихся странах из-за недоедания и, как следствие, недостатка указанного вещества в рационе.

Читайте также:  Чем занять пожилого человека дома с плохим зрением

Бинокулярное зрение

Рассматривание предметов обоими глазами. Когда человек смотрит на какой-либо предмет обоими глазами, то у него не получается восприятия двух одинаковых предметов. Это связано с тем, что изображения от всех предметов при бинокулярном зрении падают на соответствующие, или идентичные, участки сетчатки, в результате чего в представлении человека эти два изображения сливаются в одно

Бинокулярное зрение имеет большое значение в определении расстояния до предмета, его формы. Оценка величины предмета связана с размером его изображения на сетчатке и расстоянием предмета от глаза

Отсутствие бинокулярного зрения часто приводит к косоглазию

Зрачковый рефлекс

Реакция глаза на свет (сужение зрачка) представляет собой рефлекторный механизм ограничения количества света на сетчатку. В норме ширина зрачка составляет 1,5 – 8 мм

Степень освещения помещения может менять ширину зрачка в 30 раз. При сужении зрачка уменьшается поток света, исчезает сферическая аберрация, которая дает на сетчатке круги саморассеивания. При слабом освещении зрачок расширяется, что улучшает видение. Зрачковый рефлекс принимает участие в адаптации глаза

Приспособление глаза к видению предметов в условиях разной интенсивности освещения помещения

Световая адаптация. При переходе из темного помещения в светлое в первое время наступает ослепление. Постепенно глаз адаптируется к свету за счет понижения чувствительности фоторецепторов сетчатки глаза. Длится 5 – 10 минут.

Механизмы световой адаптации:

Снижение чувствительности фоторепторов к свету

Сужение рецепторного поля за счет разрыва связей горизонтальных клеток с биполярными клетками

Распад родопсина (0,001 сек.)

Темновая адаптация. При переходе из светлого помещения в темное человек сначала ничего не видит. Через некоторое время чувствительность фоторецепторов сетчатки повышается, появляются контуры предметов, затем начинают различаться их детали. длится 40 – 80 минут.

Процессы темновой адаптации:

Повышение чувствительности фоторецепторов к свету в 80 раз

Ресинтез родопсина (0,08 сек.)

Увеличение числа связей палочек с нейронами сетчатки

Увеличение площади рецептивного поля

Рис. 6.11. Темновая и световая адаптация глаза

Цветовое зрение

Человеческий глаз воспринимает 7 основных цветов и 2000 разных оттенков. Механизм восприятия цветов объясняется разными теориями

Трехкомпонентная теория цветоощущения (теория цветоощущения Ломоносова-Юнга-Гельмгольца теория цветоощущения) – предполагает существование в сетчатке трех типов фоточувствительных колбочек, которые реагируют на разную длину лучей света. Это создает разные варианты восприятия цветов

первый тип колбочек реагирует на длинные волны (610 – 950 мкм) – ощущение красного цвета

второй тип колбочек – на средние волны (460 – 609 мкм) – ощущение зеленого цвета

третий тип колбочек воспринимает короткие волны (300 – 459 мкм) – ощущение синего цвета

Восприятие других цветов обусловлено взаимодействием этих элементов. Одновременное возбуждение первого и второго типов формирует ощущение желтого и оранжевого цветов, а второго и третьего дают фиолетовый и голубоватый цвета. Одинаковое и одновременное раздражение трех типов цветовоспринимающих элементов сетчатки дает ощущение белого цвета, а торможение их формирует черный цвет

Разложение светочувствительных веществ, находящихся в колбочках, вызывает раздражение нервных окончаний; возбуждение, дошедшее до коры большого мозга, суммируется, и возникает ощущение одного однородного цвета

Полная потеря способности воспринимать цвета называется анопия, при этом люди видят все только в черно – белом цвете

Нарушение восприятия цвета – цветовая слепота (дальтонизм) — страдают в основном мужчины – около 10% – отсутствие определенного гена в Х-хромосоме

Известны 3 типа нарушений цветового зрения:

протанопия – отсутствие чувствительности к красному цвету (имеют выпадание восприятия волн длиной 490 мкм)

дейтеранопия – к зеленому цвету (имеют выпадение восприятия волн длиной 500 мкм)

тританопия – к синему цвету (выпадение восприятия волн длиной 470 и 580 мкм)

Полная цветовая слепота – монохроматия встречается редко

Исследование цветового зрения проводят с помощью таблиц Рабкина

Строение органа зрения. Адаптация глаза. Аккомодация. Близорукость и дальнозоркость. Острота зрения. Проводящие пути органа зрения.

Строение органа зрения. Орган зрения состоит из глазного яблока и вспомогательного аппарата. В глазном яблоке содержится периферический отдел зрительного анализатора. Глаз человека состоит из внутренней оболочки (сетчатки), сосудистой и внешней белковой оболочки.

Внешняя оболочка состоит из двух частей — склеры и роговицы.

Непрозрачная склера занимает 5/6 поверхности внешней оболочки, прозрачная роговица — 1/6. Сосудистая оболочка состоит из трех частей радужки, реснитчатого тела и собственно сосудистой оболочки. В центре радужки находится отверстие — зрачок, через который лучи света проникают внутрь глаза. Она содержит пигменты, от которых зависит цвет глаз. Радужная оболочка переходит в тело, а то, в свою очередь, в собственно сосудистую оболочку. Сетчатка — это внутренняя оболочка глаза. Она имеет сложное слоистое строение — из нервных клеток и их волокон.

Различают десять слоев сетчатки. К внешнему пигментному слою сетчатки подходят палочки и колбочки, которые являются видоизмененными отростками светочувствительных зрительных клеток. От нервных клеток сетчатки идет зрительный нерв — начало ведущей части зрительного анализатора.

Схема анатомического строения глаза: 1 — сетчатка, 2

хрусталик, 3 радужная оболочка, 4 роговица, 5 — баковая оболочка (склера), 6 — сосудистая оболочка, 7 — зрительный нерв.

Склеристое тело — вполне прозрачное вещество, которое содержится в очень нежной капсуле и наполняет большую часть глазного яблока. Оно выступает захламливающей средой и входит в часть оптической системы глаза. Передней, слегка вогнутую поверхность оно прилегает к задней поверхности хрусталика. Его потеря не пополняется.

В верхнем боковом углу глазницы содержится слезная железа, которая выделяет слезную жидкость (слезу), увлажняющий поверхность глазного яблока, предотвращает ее подсыхание и переохлаждению. Слеза, увлажнив поверхность глаза, стекает выездным каналом в носовой полости. Веки и ресницы защищают глазное яблоко от того, чтобы внутрь глаза не попадали посторонние частицы, брови отводят в сторону пот, стекающий со лба, а это также имеет защитное значение.

Адаптация глаза

Выработка способности глаза видеть при различной освещенности называют адаптацией. Если вечером в комнате погасить свет, то сначала человек совершенно не различает окружающих предметов. Однако
уже через 1-2 мин она начинает схватывать контуры предметов, а еще через несколько минут видит предметы достаточно четко. Это происходит благодаря изменению чувствительности сетчатки в темноте. Пребывание в темноте в течение одного часа повышает чувствительность глаза примерно в 200 раз. И особенно быстро возрастает чувствительность в первые минуты.

Это явление объясняется тем, что при ярком свете зрительный пурпур палочковидных зрительных клеток разрушается полностью. В темноте он быстро восстанавливается, и палочковидные клетки, очень чувствительны к свету, начинают выполнять свои функции, тогда как колбочко подобные, малочувствительны к свету, не способны воспринимать зрительные раздражения. Вот почему человек в темноте не различает цветов.
Однако когда в темном помещении включить свет, он как бы ослепляет человека. Она почти не различает окружающих предметов, и через 1-2 мин ее глаза начинают видеть хорошо. Это объясняется тем, что зрительный пурпур в палочковидных клетках разрушился, чувствительность к свету резко снизилась и зрительные раздражения теперь воспринимаются только колбочкоподибнимы зрительными клетками.

Аккомодация глаза

Способность глаза видеть предметы на разном расстоянии называют аккомодацией. Предмет хорошо видно тогда, когда лучи, отраженные от него, собираются на сетчатке. Это достигается изменением выпуклости хрусталика. Изменение же наступает рефлекторно — при рассмотрении предметов, находящихся на разном расстоянии от глаза. Когда мы смотрим на расположенные около предметы, выпуклость хрусталика увеличивается. Преломления лучей в глазу становится больше, в результате чего на сетчатке возникает изображение. Когда мы смотрим вдаль, хрусталик сплющивается.

В состоянии покоя аккомодации (взгляд вдаль) радиус кривизны передней поверхности хрусталика равна 10 мм, а при максимальной аккомодации, когда предмет всего приближен к глазу, радиус кривизны передней поверхности хрусталика — 5,3 мм.

Потеря эластичности сумки хрусталика с возрастом приводит к уменьшению его захламливающей способности при наибольшей аккомодации. Это увеличивает способность пожилых людей рассматривать предметы на далеком расстоянии. Ближайшая точка ясного видения с возрастом удаляется. Так, в 10-летнем возрасте она размещена на расстоянии менее 7 см от глаза, в 20 лет — 8,3 см, в 30 — 11 см, в 35 — 17 см, а в 60-70 лет приближается к 80-100 см .

С возрастом хрусталик становится менее эластичным. Способность к аккомодации начинает спадать уже с десяти лет, однако на зрении это сказывается только в преклонном возрасте (старческая дальнозоркость).

Острота зрения — это способность глаза отдельно воспринимать две точки, расположенные друг от друга на некотором расстоянии. Видение двух точек зависит от размеров изображения на сетчатке. Если они малы, то оба изображения сливаются и различить их невозможно. Размер изображения на сетчатке зависит от угла зрения: чем он меньше при восприятии двух изображений, тем больше острота зрения.

Для определения остроты зрения большое значение имеет освещение, окраска, размер зрачка, угол зрения, расстояние между предметами, места сетчатки, на которые падает изображение, и состояние адаптации. Острота зрения является простым показателем, характеризующим состояние зрительного анализатора у детей и подростков. Зная остроту зрения у детей, можно осуществлять индивидуальный подход к учащимся, размещение их в классе, рекомендовать соответствующий режим учебной работы, соответствует адекватному нагрузке на зрительный анализатор.

Проводящие пути зрительного анализатора (рис. 146). Свет, который попадает на сетчатку, проходит вначале через прозрачный светопреломляющий аппарат глаза: роговицу, водянистую влагу передней и задней камер, хрусталик и стекловидное тело. Пучок света на своем пути регулируется зрачком. Светопреломляющий аппарат направляет пучок света на более чувствительную часть сетчатки — место наилучшего видения — пятно с его центральной ямкой. Пройдя через все слои сетчатки, свет вызывает там сложные фотохимические преобразования зрительных пигментов. В результате этого в светочувствительных клетках (палочках и колбочках) возникает нервный импульс, который затем передается следующим нейронам сетчатки — биполярным клеткам (нейроцитам), а после них — нейроцитам ганглиозного слоя, ганглиозным нейроцитам. Отростки последних идут в сторону диска и формируют зрительный нерв. Пройдя в череп через канал зрительного нерва по нижней поверхности головного мозга, зрительный нерв образует неполный зрительный перекрест. От зрительного перекреста начинается зрительный тракт, который состоит из нервных волокон ганглиозных клеток сетчатки глазного яблока. Затем волокна по зрительному тракту идут к подкорковым зрительным центрам: латеральному коленчатому телу и верхним холмикам крыши среднего мозга. В латеральном коленчатом теле волокна третьего нейрона (ганглиозных нейроцитов) зрительного пути заканчиваются и вступают в контакт с клетками следующего нейрона. Аксоны этих нейроцитов проходят через внутреннюю капсулу и достигают клеток затылочной доли около шпорной борозды, где и заканчиваются (корковый конец зрительного анализатора). Часть аксонов ганглиозных клеток проходит через коленчатое тело и в составе ручки поступает в верхний холмик. Далее из серого слоя верхнего холмика импульсы идут в ядро глазодвигательного нерва и в дополнительное ядро, откуда происходит иннервация глазодвигательных мышц, мышц, которые суживают зрачки, и ресничной мышцы. Эти волокна несут импульс в ответ на световое раздражение и зрачки суживаются (зрачковый рефлекс), также происходит поворот в необходимом направлении глазных яблок.

Читайте также:  Пропадает зрение потом сильно болит голова

Приспособление глаза к ясному видению на расстоянии удаленных предметов называют аккомодацией. Механизм аккомодации глаза связан с сокращением ресничных мышц, которые изменяют кривизну хрусталика.

При рассмотрении предметов на близком расстоянии одновременно с аккомодацией действует и конвергенция, т. е. происходит сведение осей обоих глаз. Зрительные линии сходятся тем больше, чем ближе находится рассматриваемый предмет.

Преломляющую силу оптической системы глаза выражают в диоптриях («Д» — дптр). За 1 Д принимается сила линзы, фокусное расстояние которой составляет 1 м. Преломляющая сила глаза человека составляет 59 дптр при рассмотрении далеких предметов и 70,5 дптр при рассмотрении близких.

Существуют три главные аномалии преломления лучей в глазу (рефракции): близорукость, или миопия; дальнозоркость, или гиперметропия; старческая дальнозоркость, или пресбиопия (рис. 147). Основная причина всех дефектов глаза состоит в том, что не согласуются между собой преломляющая сила и длина глазного яблока, как в нормальном глазу. При близорукости (миопии) лучи сходятся перед сетчаткой в стекловидном теле, а на сетчатке вместо точки возникает круг светорассеяния, глазное яблоко при этом имеет большую длину, чем в норме. Для коррекции зрения используют вогнутые линзы с отрицательными диоптриями.

При дальнозоркости (гиперметропии) глазное яблоко короткое, и поэтому параллельные лучи, идущие от далеких предметов, собираются сзади сетчатки, а на ней получается неясное, расплывчатое изображение предмета. Этот недостаток может быть компенсирован путем использования преломляющей силы выпуклых линз с положительными диоптриями.

Старческая дальнозоркость (пресбиопия) связана со слабой эластичностью хрусталика и ослаблением натяжения цинновых связок при нормальной длине глазного яблока.

Исправлять это нарушение рефракции можно с помощью двояковыпуклых линз. Зрение одним глазом дает нам представление о предмете лишь в одной плоскости. Только при зрении одновременно двумя глазами возможно восприятие глубины и правильное представление о взаимном расположении предметов. Способность к слиянию отдельных изображений, получаемых каждым глазом, в единое целое обеспечивает бинокулярное зрение.

Острота зрения характеризует пространственную разрешающую способность глаза и определяется тем наименьшим углом, при котором человек способен различать раздельно две точки. Чем меньше угол, тем лучше зрение. В норме этот угол равен 1 мин, или 1 единице.

Для определения остроты зрения используют специальные таблицы, на которых изображены буквы или фигурки различного размера.

32. Строение органа слуха и равновесия.

Орган слуха и равновесия, преддверно-улитковый орган (organum vestibulocochleare) у человека имеет сложное строение, воспринимает колебания звуковых волн и определяет ориентировку положения тела в пространстве.

Предверно-улитковый орган (рис. 148) делится на три части: наружное, среднее и внутреннее ухо. Эти части тесно связаны анатомически и функционально. Наружное и среднее ухо проводит звуковые колебания к внутреннему уху, и таким образом является звукопроводящим аппаратом. Внутреннее ухо, в котором различают костный и перепончатый лабиринты, образует орган слуха и равновесия.

Рис. 148. Преддверно-улитковый орган (орган слуха и равновесия):

1— верхний полукружный канал; 2— преддверие; 3 — улитка; 4— слуховой нерв; 5 — сонная артерия; 6 — слуховая труба; 7— барабанная полость; 8— барабанная перепонка; 9— наружный слуховой проход; 10— наружное слуховое отверстие; 11 — ушная раковина; 12— молоточек

Различают два вида передачи звуковых колебаний — воздушную и костную проводимость звука. При воздушной проводимости звука звуковые волны улавливаются ушной раковиной и передаются по наружному слуховому проходу на барабанную перепонку, а затем через систему слуховых косточек перилимфе и эндолимфе. Человек при воздушной проводимости способен воспринимать звуки от 16 до 20 000 Гц. Костная проводимость звука осуществляется через кости черепа, которые также обладают звукопроводимостью. Воздушная проводимость звука выражена лучше, чем костная.

Рецепторы вестибулярного аппарата раздражаются от наклона или движения головы. При этом происходят рефлекторные сокращения мышц, которые способствуют выпрямлению тела и сохранению соответствующей позы. При помощи рецепторов вестибулярного аппарата происходит восприятие положения головы в пространстве движения тела. Известно; что сенсорные клетки погружены в желеобразную массу, которая содержит отолиты, состоящие из мелких кристаллов карбоната кальция. При нормальном положении тела сила тяжести заставляет отолиты оказывать давление на определенные волосковые клетки. Если голова наклонена теменем вниз, отолит провисает на волосках; при боковом наклоне головы один отолит давит на волоски, а другой провисает. Изменение давления отолитов вызывает возбуждение волосковых сенсорных клеток, которые сигнализируют о положении головы в пространстве. Чувствительные клетки гребешков в ампулах полукружных каналов возбуждаются при движении и ускорении. Поскольку три полукружных канала расположены в трех плоскостях, то движение головы в любом направлении вызывает движение эндолимфы. Раздражения волосковых сенсорных клеток передаются чувствительным окончаниям преддверной части преддверно-улиткового нерва. Тела нейронов этого нерва находятся в преддверном узле, который лежит на дне внутреннего слухового прохода, а центральные отростки в составе преддверно-улиткового нерва идут в полость черепа, а затем в мозг к вестибулярным ядрам. Отростки клеток вестибулярных ядер (очередной нейрон) направляются к ядрам мозжечка и к спинному мозгу, образуют далее преддверно-спинномозговой путь. Они также входят в задний продольный пучок ствола головного мозга. Часть волокон преддверной части преддверно-улиткового нерва, минуя вестибулярные ядра, идут непосредственно в мозжечок.

При возбудимости вестибулярного аппарата возникают многочисленные рефлекторные реакции двигательного характера, которые изменяют деятельность внутренних органов, а также различные сенсорные реакции. Примером таких реакций может быть появление быстро повторяющихся движений глазных яблок (нистагма) после проведения вращательной пробы: человек делает глазами ритмичные движения в сторону, противоположную вращению, а затем очень быстро в сторону, которая совпадает с направлением вращения. Возможны также появление изменений в деятельности сердца, в суживании или расширении сосудов, снижение артериального давления, усиление перистальтики кишечника и желудка и др. При возбудимости вестибулярного аппарата появляется чувство головокружения, нарушается ориентировка в окружающей среде, возникает чувство тошноты. Вестибулярный аппарат участвует в регуляции и перераспределении мышечного тонуса

Адаптация — это приспособление глаза к данным условиям освещения и изменение в соответствии с этим чувствительности глаза. Различают адаптацию темновую, световую и цветовую (хроматическую).

Темновая адаптация — повышение чувствительности глаза к свету в условиях малой освещенности. После яркого солнечного света в темном подвальном помещении сначала ничего не видно, но спустя несколько минут мы начинаем постепенно различать предметы. В помещении не стало светлее, но повысилась чувствительность сетчатой оболочки к свету, глаз адаптирован к слабому освещению.

При длительном наблюдении за темновой адаптацией обнаруживается постоянное повышение чувствительности сетчатки к свету, которая должна быть выражена и количественно. По истечении 24 ч, например, чувствительность в 5,5 раза больше чувствительности, зарегистрированной через час после начала процесса адаптации.

Световая адаптация — снижение чувствительности глаза к свету в условиях большой освещенности. В случае если из темного помещения выйти на дневной свет, то в первый момент свет ослепляет глаза. Приходится закрыть глаза и смотреть через узкую щелочку. Лишь спустя несколько минут глаз привыкает опять к дневному свету. С одной стороны, это достигается благодаря зрачку, который при сильном свете суживается, а при слабом расширяется. С другой стороны (главным образом), это обеспечивается чувствительностью сетчатой оболочки, которая при сильном световом раздражении понижается, а при слабом возрастает.

При темновой или световой адаптации глаз никогда не достигает полной способности зрительного восприятия. По этой причине на рабочем месте следует избегать резких световых контрастов и тем самым по воз­можности исключать крайне важность переадаптации глаза, поскольку она снижает остроту зрения.

Глаз всегда фиксирует наиболее светлые пятна. В случае если в поле зрения человека находится сильный источник света или ослепительно яркая плоскость, то они оказывают наиболее сильное действие на чувствительность сетчатой оболочки глаза. По этой причине, когда мы смотрим на светлое окно, окружающая его поверхность стены кажется нам темной и расплывчатой. В случае если же исключить действие падающего из окна света на глаз, то та же поверхность видится нами более светлой и четкой.

Цветовая адаптация — снижение чувствительности глаза к цвету при длительном его наблюдении. При длительном действии какого-либо цвета на глаз чувствительность сетчатки к этому цвету снижается, и он как бы тускнеет. Цветовая адаптация — явление более слабое, чем световая адаптация, и протекает в более короткий промежуток времени. Наибольшее время адаптации наблюдается для красного и фиолетового цветов, наименьшее — для желтого и зеленого.

Под действием цветовой адаптации происходят следующие изменения:

  • а) насыщенность всех цветов снижается (к ним как бы подмешивается серый);
  • б) светлые цвета темнеют, а темные светлеют;
  • в) теплые цвета становятся более холодными, а холодные — более теплыми.

Ф. ?б. происходит сдвиг всех трех характеристик цвета. Объяснение этому явлению нетрудно найти исходя из трехкомпонентной теории. При длительной фиксации цвета какой-либо из цветочувствительных аппаратов испытывает нарастающее утомление, нарушается первоначальное соотношение возбуждений, и это приводит к изменению характеристик цвета.

В случае если цвет фиксируется наблюдателем чересчур долго, хроматическая адаптация перерастает в качественно иное явление — цветовое утомление. В результате цветового утомления первоначальное цветовое ощущение может измениться до неузнаваемости. Так, наблюдатель может спутать про­тивоположные цвета? к примеру красный и зеленый.

В искусственных лабораторных условиях при уравнивании эффективной яркости (светлоты) спектральных цветов обнаружено, что наименьшим утомляющим действием обладает желтый цвет, затем к краям спектра кривая утомляющего действия резко повышается (опыты Е. Рабкина). При этом в обычной ситуации, при естественных условиях наблюдения цвета? оказалось, что утомляющее действие цвета зависит не от цветового тона, а только от насыщенности при прочих равных условиях (опыты Е. Каменской). Более обще говоря, утомляющее действие цвета пропор­ционально его количеству, а количество цвета можно рассматривать как функцию цветового тона, яркости, насыщенности, угловых размеров пятна, цветового контраста и времени наблюдения. При прочих равных условиях наибольшим количеством цвета обладают красный и оранжевый, а наименьшим — синий и фиолетовый.

Периферия сетчатки глаза утомляется гораздо скорее, чем центральные части. В этом нетрудно убедиться на простом опыте. На черном квадрате размером 30Х30 мм изображаются белый квадратик 3Х3 мм и ниже — белая полоска 24Х1 мм. При фиксации взгляда на квадратике очень скоро полоска тускнеет и исчезает. Опыт удается лучше, в случае если смотреть одним глазом.

Существует гипотеза о том, что зрение далеких предков человека было ахроматическим. Затем в процессе биологической эволюции цветоощущающий аппарат раздвоился на желтый и синий, а желтый, в свою очередь,— на красный и зеленый. Нередкие в настоящее время случаи цветовой слепоты или пониженной чувствительности к некоторым цветам можно рассматривать как проявления атавизма — возврата к анатомическим и физиологическим свойствам далеких предков. Различают три вида цветовой слепоты: к красному (протанопия); к зеленому (девтеранопия) и — гораздо реже — к синему (тританопия). Последний случай — патологический, в то время как два первых — физиологические, врожденные. Цветовую слепоту часто называют общим словом ??дальтонизм?? по имени английского ученого Д. Дальтона, открывшего это явление на собственном опыте (он был краснослепым).

Источники:
  • http://poisk-ru.ru/s13173t1.html
  • http://meduniver.com/Medical/ophtalmologia/ocenka_svetoochuchenia_i_niktometria.html
  • http://etoglaza.ru/anatomia/vazhno/adaptatsiya-glaza.html
  • http://studfiles.net/preview/5600004/page:4/
  • http://cyberpedia.su/4x4fae.html
  • http://studwood.ru/914888/psihologiya/adaptatsiya